首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Across energy, agricultural and forestry landscapes, the production of biomass for energy has emerged as a controversial driver of land‐use change. We present a novel, simple methodology, to probe the potential global sustainability limits of bioenergy over time for energy provision and climate change mitigation using a complex‐systems approach for assessing land‐use dynamics. Primary biomass that could provide between 70 EJ year?1 and 360 EJ year?1, globally, by 2050 was simulated in the context of different land‐use futures, food diet patterns and climate change mitigation efforts. Our simulations also show ranges of potential greenhouse gas emissions for agriculture, forestry and other land uses by 2050, including not only above‐ground biomass‐related emissions, but also from changes in soil carbon, from as high as 24 GtCO2eq year?1 to as low as minus 21 GtCO2eq year?1, which would represent a significant source of negative emissions. Based on the modelling simulations, the discussions offer novel insights about bioenergy as part of a broader integrated system. Whilst there are sustainability limits to the scale of bioenergy provision, they are dynamic over time, being responsive to land management options deployed worldwide.  相似文献   

2.
Biomass change of the world's forests is critical to the global carbon cycle. Despite storing nearly half of global forest carbon, the boreal biome of diverse forest types and ages is a poorly understood component of the carbon cycle. Using data from 871 permanent plots in the western boreal forest of Canada, we examined net annual aboveground biomass change (ΔAGB) of four major forest types between 1958 and 2011. We found that ΔAGB was higher for deciduous broadleaf (DEC) (1.44 Mg ha?1 year?1, 95% Bayesian confidence interval (CI), 1.22–1.68) and early‐successional coniferous forests (ESC) (1.42, CI, 1.30–1.56) than mixed forests (MIX) (0.80, CI, 0.50–1.11) and late‐successional coniferous (LSC) forests (0.62, CI, 0.39–0.88). ΔAGB declined with forest age as well as calendar year. After accounting for the effects of forest age, ΔAGB declined by 0.035, 0.021, 0.032 and 0.069 Mg ha?1 year?1 per calendar year in DEC, ESC, MIX and LSC forests, respectively. The ΔAGB declines resulted from increased tree mortality and reduced growth in all forest types except DEC, in which a large biomass loss from mortality was accompanied with a small increase in growth. With every degree of annual temperature increase, ΔAGB decreased by 1.00, 0.20, 0.55 and 1.07 Mg ha?1 year?1 in DEC, ESC, MIX and LSC forests, respectively. With every cm decrease of annual climatic moisture availability, ΔAGB decreased 0.030, 0.045 and 0.17 Mg ha?1 year?1 in ESC, MIX and LSC forests, but changed little in DEC forests. Our results suggest that persistent warming and decreasing water availability have profound negative effects on forest biomass in the boreal forests of western Canada. Furthermore, our results indicate that forest responses to climate change are strongly dependent on forest composition with late‐successional coniferous forests being most vulnerable to climate changes in terms of aboveground biomass.  相似文献   

3.
A multi-compartment model was developed to summarize existing data and predict soil carbon sequestration beneath switchgrass (Panicum virgatum) in the southeastern USA. Soil carbon sequestration is an important part of sustainable switchgrass production for bioenergy because soil organic matter promotes water retention, nutrient supply, and soil properties that minimize erosion. A literature review was undertaken for the purpose of model parameterization. A sensitivity analysis of the model indicated that predictions of soil carbon sequestration were affected most by changes in aboveground biomass production, the ratio of belowground-to-aboveground biomass production, and mean annual temperature. Simulations indicated that the annual rate of soil carbon sequestration approached steady state after a decade of switchgrass growth while predicted mineral soil carbon stocks were still increasing. A model-based experiment was performed to predict rates of soil carbon sequestration at different levels of nitrogen fertilization and initial soil carbon stocks (to a 30-cm depth). At a mean annual temperature of 13°C, the predicted rate of soil carbon sequestration varied from ?28 to 114?g?C?m?2?year?1 (after 30?years) and was greater than zero in 11 of 12 simulations that varied initial surface soil carbon stocks from 1 to 5?kg?C?m?2 and nitrogen fertilization from 0 to 18?g?N?m?2?year?1. The modeling indicated that more research is needed on the process of biomass allocation and on nitrogen loss from mature plantations, respectively, to improve our understanding of carbon and nitrogen dynamics in switchgrass agriculture.  相似文献   

4.
At present, research activities on the role of orchard systems in sequestering atmospheric CO2 remain scarce. This paper aimed to contribute to assessing the carbon balance of a Mediterranean olive (Olea europea) orchard. The net ecosystem exchange, the ecosystem respiration and the gross primary production were computed for two consecutive years through eddy covariance, and the different biomass accumulation terms were also inferred in the same period through an inventorial method. The net carbon exchange ranged from 13.45 t(C) ha?1 year?1 to 11.60 t(C) ha?1 year?1. Very similar values [12.2 and 11.5 t(C) ha?1 year?1] were found with the direct carbon accumulation inventory. The intensive farming management (irrigation included) and the young age of the plants (12–16 years old), still in an active growing phase, led the olive plantation to be a higher carbon sink with respect to other evergreen orchards reported in the literature.  相似文献   

5.
Global warming necessitates urgent action to reduce carbon dioxide (CO2) emissions and remove CO2 from the atmosphere. Biochar, a type of carbonized biomass which can be produced from crop residues (CRs), offers a promising solution for carbon dioxide removal (CDR) when it is used to sequester photosynthetically fixed carbon that would otherwise have been returned to atmospheric CO2 through respiration or combustion. However, high-resolution spatially explicit maps of CR resources and their capacity for climate change mitigation through biochar production are currently lacking, with previous global studies relying on coarse (mostly country scale) aggregated statistics. By developing a comprehensive high spatial resolution global dataset of CR production, we show that, globally, CRs generate around 2.4 Pg C annually. If 100% of these residues were utilized, the maximum theoretical technical potential for biochar production from CRs amounts to 1.0 Pg C year−1 (3.7 Pg CO2e year−1). The permanence of biochar differs across regions, with the fraction of initial carbon that remains after 100 years ranging from 60% in warm climates to nearly 100% in cryosols. Assuming that biochar is sequestered in soils close to point of production, approximately 0.72 Pg C year−1 (2.6 Pg CO2e year−1) of the technical potential would remain sequestered after 100 years. However, when considering limitations on sustainable residue harvesting and competing livestock usage, the global biochar production potential decreases to 0.51 Pg C year−1 (1.9 Pg CO2e year−1), with 0.36 Pg C year−1 (1.3 Pg CO2e year−1) remaining sequestered after a century. Twelve countries have the technical potential to sequester over one fifth of their current emissions as biochar from CRs, with Bhutan (68%) and India (53%) having the largest ratios. The high-resolution maps of CR production and biochar sequestration potential provided here will provide valuable insights and support decision-making related to biochar production and investment in biochar production capacity.  相似文献   

6.
In this study, we quantify the impacts of climate and land use on soil N2O and CH4 fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land‐use gradients at Mt. Kilimanjaro, combining long‐term in situ chamber and laboratory soil core incubation techniques. Both methods showed similar patterns of GHG exchange. Although there were distinct differences from ecosystem to ecosystem, soils generally functioned as net sources and sinks for N2O and CH4 respectively. N2O emissions correlated positively with soil moisture and total soil nitrogen content. CH4 uptake rates correlated negatively with soil moisture and clay content and positively with SOC. Due to moderate soil moisture contents and the dominance of nitrification in soil N turnover, N2O emissions of tropical montane forests were generally low (<1.2 kg N ha?1 year?1), and it is likely that ecosystem N losses are driven instead by nitrate leaching (~10 kg N ha?1 year?1). Forest soils with well‐aerated litter layers were a significant sink for atmospheric CH4 (up to 4 kg C ha?1 year?1) regardless of low mean annual temperatures at higher elevations. Land‐use intensification significantly increased the soil N2O source strength and significantly decreased the soil CH4 sink. Compared to decreases in aboveground and belowground carbon stocks enhanced soil non‐CO2 GHG emissions following land‐use conversion from tropical forests to homegardens and coffee plantations were only a small factor in the total GHG budget. However, due to lower ecosystem carbon stock changes, enhanced N2O emissions significantly contributed to total GHG emissions following conversion of savanna into grassland and particularly maize. Overall, we found that the protection and sustainable management of aboveground and belowground carbon and nitrogen stocks of agroforestry and arable systems is most crucial for mitigating GHG emissions from land‐use change.  相似文献   

7.
The work presents a method of assessing the greenhouse gas (GHG) emissions of forest-based biomass supply chains on a site-specific level. The method includes biomass availability and transportation network assessments based on geographical information system data, and GHG emission assessment based on life-cycle assessment methods. The GHG assessment takes into account distances traveled on the various types of road by trucks. Two case studies are presented, with 720 TJ?year?1 of small-diameter energy wood chips delivered to two locations in Finland: Mikkeli and Rovaniemi. In the case studies, possibilities for train transportation from distant supply areas were included. Regarding railway transportation, it was assumed that the end-points have direct railway connections. The case study results show that if direct truck transportation around the plants were supplemented with one trainload per week (230 TJ?year?1) from suitably located railway loading points, GHG emission savings of 8 % could be achieved in both cases. The most GHG-efficient supply chains around the railway loading points were found to be based on transportation of loose trees to the loading spots. Because of better biomass availability and better roads, the emissions of the least GHG-emitting supply chain were 9 % lower in Mikkeli’s case than for Rovaniemi. The results indicate that site-specific biomass availability and transportation possibilities should be taken into account in assessment of the GHG emissions of a particular biomass supply chain. Also, if suitable conditions exist, railway transportation offers potential for reduced supply-chain GHG emissions.  相似文献   

8.
Secondary mixed forests are one of the dominant forest cover types in human-dominated temperate regions. However, our understanding of how secondary succession affects carbon cycling and carbon sequestration in these ecosystems is limited. We studied carbon cycling and net ecosystem production (NEP) over 4 years (2004–2008) in a cool-temperate deciduous forest at an early stage of secondary succession (18 years after clear-cutting). Net primary production of the 18-year-old forest in this study was 5.2 tC ha?1 year?1, including below-ground coarse roots; this was partitioned into 2.5 tC ha?1 year?1 biomass increment, 1.6 tC ha?1 year?1 foliage litter, and 1.0 tC ha?1 year?1 other woody detritus. The total amount of annual soil surface CO2 efflux was 6.8 tC ha?1 year?1, which included root respiration (1.9 tC ha?1 year?1) and heterotrophic respiration (RH) from soils (4.9 tC ha?1 year?1). The 18-year forest at this study site exhibited a great increase in biomass pool as a result of considerable total tree growth and low mortality of tree stems. In contrast, the soil organic matter (SOM) pool decreased markedly (?1.6 tC ha?1 year?1), although further study of below-ground detritus production and RH of SOM decomposition is needed. This young 18-year forest was a weak carbon sink (0.9 tC ha?1 year?1) at this stage of secondary succession. The NEP of this 18-year forest is likely to increase gradually because biomass increases with tree growth and with the improvement of the SOM pool through increasing litter and dead wood production with stand development.  相似文献   

9.
Nitrogen (N) addition has been well documented to decrease plant biodiversity across various terrestrial ecosystems. However, such generalizations about the impacts of N addition on soil microbial communities are lacking. This study was conducted to examine the impacts of N addition (urea-N fertilizer) on soil microbial communities in a semi-arid temperate steppe in northern China. Soil microbial biomass carbon (C), biomass N (MBN), net N mineralization and nitrification, and bacterial and fungal community level physiological profiles (CLPP) along an N addition gradient (0–64 g N m?2 year?1) were measured. Three years of N addition caused gradual or step increases in soil NH4-N, NO3-N, net N mineralization and nitrification in the early growing season. The reductions in microbial biomass under high N addition levels (32 and 64 g N m?2 year?1) are partly attributed to the deleterious effects of soil pH. An N optimum between 16 and 32 g N m?2 year?1 in microbial biomass and functional diversity exists in the temperate steppe in northern China. Similar N loading thresholds may also occur in other ecosystems, which help to interpret the contrasting observations of microbial responses to N addition.  相似文献   

10.
Tropical peatlands are vital ecosystems that play an important role in global carbon storage and cycles. Current estimates of greenhouse gases from these peatlands are uncertain as emissions vary with environmental conditions. This study provides the first comprehensive analysis of managed and natural tropical peatland GHG fluxes: heterotrophic (i.e. soil respiration without roots), total CO2 respiration rates, CH4 and N2O fluxes. The study documents studies that measure GHG fluxes from the soil (n = 372) from various land uses, groundwater levels and environmental conditions. We found that total soil respiration was larger in managed peat ecosystems (median = 52.3 Mg CO2 ha?1 year?1) than in natural forest (median = 35.9 Mg CO2 ha?1 year?1). Groundwater level had a stronger effect on soil CO2 emission than land use. Every 100 mm drop of groundwater level caused an increase of 5.1 and 3.7 Mg CO2 ha?1 year?1 for plantation and cropping land use, respectively. Where groundwater is deep (≥0.5 m), heterotrophic respiration constituted 84% of the total emissions. N2O emissions were significantly larger at deeper groundwater levels, where every drop in 100 mm of groundwater level resulted in an exponential emission increase (exp(0.7) kg N ha?1 year?1). Deeper groundwater levels induced high N2O emissions, which constitute about 15% of total GHG emissions. CH4 emissions were large where groundwater is shallow; however, they were substantially smaller than other GHG emissions. When compared to temperate and boreal peatland soils, tropical peatlands had, on average, double the CO2 emissions. Surprisingly, the CO2 emission rates in tropical peatlands were in the same magnitude as tropical mineral soils. This comprehensive analysis provides a great understanding of the GHG dynamics within tropical peat soils that can be used as a guide for policymakers to create suitable programmes to manage the sustainability of peatlands effectively.  相似文献   

11.
Wood density (WD) is believed to be a key trait in driving growth strategies of tropical forest species, and as it entails the amount of mass per volume of wood, it also tends to correlate with forest carbon stocks. Yet there is relatively little information on how interspecific variation in WD correlates with biomass dynamics at the species and population level. We determined changes in biomass in permanent plots in a logged forest in Vietnam from 2004 to 2012, a period representing the last 8 years of a 30 years logging cycle. We measured diameter at breast height (DBH) and estimated aboveground biomass (AGB) growth, mortality, and net AGB increment (the difference between AGB gains and losses through growth and mortality) per species at the individual and population (i.e. corrected for species abundance) level, and correlated these with WD. At the population level, mean net AGB increment rates were 6.47 Mg ha?1 year?1 resulting from a mean AGB growth of 8.30 Mg ha?1 year?1, AGB recruitment of 0.67 Mg ha?1 year?1 and AGB losses through mortality of 2.50 Mg ha?1 year?1. Across species there was a negative relationship between WD and mortality rate, WD and DBH growth rate, and a positive relationship between WD and tree standing biomass. Standing biomass in turn was positively related to AGB growth, and net AGB increment both at the individual and population level. Our findings support the view that high wood density species contribute more to total biomass and indirectly to biomass increment than low wood density species in tropical forests. Maintaining high wood density species thus has potential to increase biomass recovery and carbon sequestration after logging.  相似文献   

12.
Extreme climatic events and land‐use change are known to influence strongly the current carbon cycle of Amazonia, and have the potential to cause significant global climate impacts. This review intends to evaluate the effects of both climate and anthropogenic perturbations on the carbon balance of the Brazilian Amazon and to understand how they interact with each other. By analysing the outputs of the Intergovernmental Panel for Climate Change (IPCC) Assessment Report 4 (AR4) model ensemble, we demonstrate that Amazonian temperatures and water stress are both likely to increase over the 21st Century. Curbing deforestation in the Brazilian Amazon by 62% in 2010 relative to the 1990s mean decreased the Brazilian Amazon's deforestation contribution to global land use carbon emissions from 17% in the 1990s and early 2000s to 9% by 2010. Carbon sources in Amazonia are likely to be dominated by climatic impacts allied with forest fires (48.3% relative contribution) during extreme droughts. The current net carbon sink (net biome productivity, NBP) of +0.16 (ranging from +0.11 to +0.21) Pg C year?1 in the Brazilian Amazon, equivalent to 13.3% of global carbon emissions from land‐use change for 2008, can be negated or reversed during drought years [NBP = ?0.06 (?0.31 to +0.01) Pg C year?1]. Therefore, reducing forest fires, in addition to reducing deforestation, would be an important measure for minimizing future emissions. Conversely, doubling the current area of secondary forests and avoiding additional removal of primary forests would help the Amazonian gross forest sink to offset approximately 42% of global land‐use change emissions. We conclude that a few strategic environmental policy measures are likely to strengthen the Amazonian net carbon sink with global implications. Moreover, these actions could increase the resilience of the net carbon sink to future increases in drought frequency.  相似文献   

13.
Biofuels are both a promising solution to global warming mitigation and a potential contributor to the problem. Several life cycle assessments of bioethanol have been conducted to address these questions. We performed a synthesis of the available data on Brazilian ethanol production focusing on greenhouse gas (GHG) emissions and carbon (C) sinks in the agricultural and industrial phases. Emissions of carbon dioxide (CO2) from fossil fuels, methane (CH4) and nitrous oxide (N2O) from sources commonly included in C footprints, such as fossil fuel usage, biomass burning, nitrogen fertilizer application, liming and litter decomposition were accounted for. In addition, black carbon (BC) emissions from burning biomass and soil C sequestration were included in the balance. Most of the annual emissions per hectare are in the agricultural phase, both in the burned system (2209 out of a total of 2398 kg Ceq), and in the unburned system (559 out of 748 kg Ceq). Although nitrogen fertilizer emissions are large, 111 kg Ceq ha?1 yr?1, the largest single source of emissions is biomass burning in the manual harvest system, with a large amount of both GHG (196 kg Ceq ha?1 yr?1). and BC (1536 kg Ceq ha?1 yr?1). Besides avoiding emissions from biomass burning, harvesting sugarcane mechanically without burning tends to increase soil C stocks, providing a C sink of 1500 kg C ha?1 yr?1 in the 30 cm layer. The data show a C output: input ratio of 1.4 for ethanol produced under the conventionally burned and manual harvest compared with 6.5 for the mechanized harvest without burning, signifying the importance of conservation agricultural systems in bioethanol feedstock production.  相似文献   

14.
National scale projections of bioenergy crop yields and their environmental impacts are essential to identify appropriate locations to place bioenergy crops and ensure sustainable land use strategies. In this study, we used the process‐based Daily Century (DAYCENT) model with site‐specific environmental data to simulate sorghum (Sorghum bicolor L. Moench) biomass yield, soil organic carbon (SOC) change, and nitrous oxide emissions across cultivated lands in the continental United States. The simulated rainfed dry biomass productivity ranged from 0.8 to 19.2 Mg ha?1 year?1, with a spatiotemporal average of  Mg ha?1 year?1, and a coefficient of variation of 35%. The average SOC sequestration and direct nitrous oxide emission rates were simulated as  Mg CO2e ha?1 year?1 and  Mg CO2e ha?1 year?1, respectively. Compared to field‐observed biomass yield data at multiple locations, model predictions of biomass productivity showed a root mean square error (RMSE) of 5.6 Mg ha?1 year?1. In comparison to the multi State (n = 21) NASS database, our results showed RMSE of 5.5 Mg ha?1 year?1. Model projections of baseline SOC showed RMSE of 1.9 kg/m2 in comparison to a recently available continental SOC stock dataset. The model‐predicted N2O emissions are close to 1.25% of N input. Our results suggest 10.2 million ha of cultivated lands in the Southern and Lower Midwestern United States will produce >10 Mg ha?1 year?1 with net carbon sequestration under rainfed conditions. Cultivated lands in Upper Midwestern states including Iowa, Minnesota, Montana, Michigan, and North Dakota showed lower sorghum biomass productivity (average: 6.9 Mg ha?1 year?1) with net sequestration (average: 0.13 Mg CO2e ha?1 year?1). Our national‐scale spatially explicit results are critical inputs for robust life cycle assessment of bioenergy production systems and land use‐based climate change mitigation strategies.  相似文献   

15.
A short rotation coppice (SRC) with poplar was established in a randomised fertilisation experiment on sandy loam soil in Potsdam (Northeast Germany). The main objective of this study was to assess if negative environmental effects as nitrogen leaching and greenhouse gas emissions are enhanced by mineral nitrogen (N) fertiliser applied to poplar at rates of 0, 50 and 75 kg N ha?1 year?1 and how these effects are influenced by tree age with increasing number of rotation periods and cycles of organic matter decomposition and tree growth after each harvesting event. Between 2008 and 2012, the leaching of nitrate (NO3 ?) was monitored with self-integrating accumulators over 6-month periods and the emissions of the greenhouse gases (GHG) nitrous oxide (N2O) and carbon dioxide (CO2) were determined in closed gas chambers. During the first 4 years of the poplar SRC, most nitrogen was lost through NO3 ? leaching from the main root zone; however, there was no significant relationship to the rate of N fertilisation. On average, 5.8 kg N ha?1 year?1 (13.0 kg CO2equ) was leached from the root zone. Nitrogen leaching rates decreased in the course of the 4-year study parallel to an increase of the fine root biomass and the degree of mycorrhization. In contrast to N leaching, the loss of nitrogen by N2O emissions from the soil was very low with an average of 0.61 kg N ha?1 year?1 (182 kg CO2equ) and were also not affected by N fertilisation over the whole study period. Real CO2 emissions from the poplar soil were two orders of magnitude higher ranging between 15,122 and 19,091 kg CO2 ha?1 year?1 and followed the rotation period with enhanced emission rates in the years of harvest. As key-factors for NO3 ? leaching and N2O emissions, the time after planting and after harvest and the rotation period have been identified by a mixed effects model.  相似文献   

16.
Globally, carbon‐rich mangrove forests are deforested and degraded due to land‐use and land‐cover change (LULCC). The impact of mangrove deforestation on carbon emissions has been reported on a global scale; however, uncertainty remains at subnational scales due to geographical variability and field data limitations. We present an assessment of blue carbon storage at five mangrove sites across West Papua Province, Indonesia, a region that supports 10% of the world's mangrove area. The sites are representative of contrasting hydrogeomorphic settings and also capture change over a 25‐years LULCC chronosequence. Field‐based assessments were conducted across 255 plots covering undisturbed and LULCC‐affected mangroves (0‐, 5‐, 10‐, 15‐ and 25‐year‐old post‐harvest or regenerating forests as well as 15‐year‐old aquaculture ponds). Undisturbed mangroves stored total ecosystem carbon stocks of 182–2,730 (mean ± SD: 1,087 ± 584) Mg C/ha, with the large variation driven by hydrogeomorphic settings. The highest carbon stocks were found in estuarine interior (EI) mangroves, followed by open coast interior, open coast fringe and EI forests. Forest harvesting did not significantly affect soil carbon stocks, despite an elevated dead wood density relative to undisturbed forests, but it did remove nearly all live biomass. Aquaculture conversion removed 60% of soil carbon stock and 85% of live biomass carbon stock, relative to reference sites. By contrast, mangroves left to regenerate for more than 25 years reached the same level of biomass carbon compared to undisturbed forests, with annual biomass accumulation rates of 3.6 ± 1.1 Mg C ha?1 year?1. This study shows that hydrogeomorphic setting controls natural dynamics of mangrove blue carbon stocks, while long‐term land‐use changes affect carbon loss and gain to a substantial degree. Therefore, current land‐based climate policies must incorporate landscape and land‐use characteristics, and their related carbon management consequences, for more effective emissions reduction targets and restoration outcomes.  相似文献   

17.
Analysis of growth and biomass turnover in natural forests of Eucalyptus regnans, the world's tallest angiosperm, reveals it is also the world's most productive forest type, with fire disturbance an important mediator of net primary productivity (NPP). A comprehensive empirical database was used to calculate the averaged temporal pattern of NPP from regeneration to 250 years age. NPP peaks at 23.1 ± 3.8 (95% interquantile range) Mg C ha?1 year?1 at age 14 years, and declines gradually to about 9.2 ± 0.8 Mg C ha?1 year?1 at 130 years, with an average NPP over 250 years of 11.4 ± 1.1 Mg C ha?1 year?1, a value similar to the most productive temperate and tropical forests around the world. We then applied the age‐class distribution of E. regnans resulting from relatively recent historical fires to estimate current NPP for the forest estate. Values of NPP were 40% higher (13 Mg C ha?1 year?1) than if forests were assumed to be at maturity (9.2 Mg C ha?1 year?1). The empirically derived NPP time series for the E. regnans estate was then compared against predictions from 21 global circulation models, showing that none of them had the capacity to simulate a post‐disturbance peak in NPP, as found in E. regnans. The potential importance of disturbance impacts on NPP was further tested by applying a similar approach to the temperate forests of conterminous United States and of China. Allowing for the effects of disturbance, NPP summed across both regions was on average 11% (or 194 Tg C/year) greater than if all forests were assumed to be in a mature state. The results illustrate the importance of accounting for past disturbance history and growth stage when estimating forest primary productivity, with implications for carbon balance modelling at local to global scales.  相似文献   

18.
A carbon flux model, the vegetation integrated simulator for trace gases, was employed to estimate the carbon budgets of vegetation ecosystems in South Korea. The geographic information system was used to prepare the input variables for the model, such as climate, soil, and land-cover data, from reliable national inventories. Model simulation results indicated that the annual average gross primary production, net primary production, and soil respiration (SR) for 10 years were 91.89, 40.16, and 62.91 Tg C year?1, respectively. The model also estimated a net ecosystem production with a value of 3.51 Tg C year?1 between 1999 and 2008. Such results indicate that the vegetation ecosystems of South Korea offset 3.3 % of anthropogenic emissions as a net carbon sink. Latitudinal and topographical gradients over the total simulation area were found for all estimates. In addition, the estimates varied between seasons and years, especially in estimates for biomass growth and carbon uptake, because of variations in the weather conditions. Finally, model validation was conducted using measured soil efflux and flux measurement data from the Gwangneung experimental forest (GEF). The estimated SR accounted for 81.6 % of the observed SR at the GEF site (P < 0.005). Further, the model accounted well for the observed phase and amplitude of changes in the summer and autumn seasons.  相似文献   

19.
20.
Biometric-based carbon flux measurements were conducted in a pine forest on lava flow of Mt. Fuji, Japan, in order to estimate carbon cycling and sequestration. The forest consists mainly of Japanese red pine (Pinus densiflora) in a canopy layer and Japanese holly (Ilex pedunculosa) in a subtree layer. The lava remains exposed on the ground surface, and the soil on the lava flow is still immature with no mineral soil layer. The results showed that the net primary production (NPP) of the forest was 7.3 ± 0.7 t C ha?1 year?1, of which 1.4 ± 0.4 t C ha?1 year?1 was partitioned to biomass increment, 3.2 ± 0.5 t C ha?1 year?1 to above-ground fine litter production, 1.9 t C ha?1 year?1 to fine root production, and 0.8 ± 0.2 t C ha?1 year?1 to coarse woody debris. The total amount of annual soil surface CO2 efflux was estimated as 6.1 ± 2.9 t C ha?1 year?1, using a closed chamber method. The estimated decomposition rate of soil organic matter, which subtracted annual root respiration from soil respiration, was 4.2 ± 3.1 t C ha?1 year?1. Biometric-based net ecosystem production (NEP) in the pine forest was estimated at 2.9 ± 3.2 t C ha?1 year?1, with high uncertainty due mainly to the model estimation error of annual soil respiration and root respiration. The sequestered carbon being allocated in roughly equal amounts to living biomass (1.4 t C ha?1 year?1) and the non-living C pool (1.5 t C ha?1 year?1). Our estimate of biometric-based NEP was 25 % lower than the eddy covariance-based NEP in this pine forest, due partly to the underestimation of NPP and difficulty of estimation of soil and root respiration in the pine forest on lava flows that have large heterogeneity of soil depth. However, our results indicate that the mature pine forest acted as a significant carbon sink even when established on lava flow with low nutrient content in immature soils, and that sequestration strength, both in biomass and in soil organic matter, is large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号