首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Improving production in short rotation coppice (SRC) plantations requires, among other elements, a proper understanding of clonal performance. Genotypic stability over a range of environments is a factor of concern for breeding and recommendation purposes. Most common stability measures can be embedded in a mixed‐model framework accounting for interaction and heterocedasticity in genotype‐by‐environment tables. Data from nine hybrid poplars of different taxonomic background were tested in four Mediterranean sites under three agronomic practices (control, herbicide application, and supplementary fertilization) for total biomass (TB), stem biomass (SB), and branch biomass (BB) at the end of the first rotation. Stability models (stability variance, Finlay–Wilkinson and Eberhart–Russell) were compared, also allowing for the definition of groups of genotypes with distinct taxonomic backgrounds and a priori different variabilities. Results showed that genotype‐by‐environment (GE) interactions were associated with factors inherent to evaluation sites rather than to the agronomic practices tested. Depending on biomass fraction, regression models provided appropriate stability measures. Highly reactive clones to improving environmental conditions (e.g., ‘AF2’) tended to show the largest mean TB. However, this was not always the case, as clone ‘Monviso’ showed both intermediate reactivity (i.e., stable sensu Eberhart–Russell) and enhanced overall performance. The taxonomic group was relevant for explaining stability patterns for SB. The stability assessment for BB indicated different patterns in biomass allocation. Present findings point to the feasibility of either exploiting specific adaptation (in which case hybrid type may play a relevant role) or searching for broadly adapted, stable material exhibiting good performance in Mediterranean conditions.  相似文献   

2.
Given today's political targets, energy production from agricultural areas is likely to increase and therefore needs to be more sustainable. The aim of this study was thus to carry out a long‐term field trial based on the poplar short‐rotation coppice (SRC), in order to compare dry matter, energy‐use efficiency and the net energy yield obtainable from this crop in relation to different harvest frequencies (1‐, 2‐ and 3‐year cutting cycles). The results showed that poplar SRC performed very well under temperate climates as it can survive up to 12 years, providing a considerable annual biomass yield (9.9, 13.8, 16.4 t ha?1 yr?1 for annual T1, biannual T2 and triennial T3 cutting cycles, respectively). The system tested in southern Europe showed a positive energy balance characterized by a high energy efficiency. We found that the choice of harvest interval had huge consequences in terms of energy yields. In fact, the energy efficiency improved from T1 to T2 and T3, while the net energy yield increased from 172 to 299 GJ ha?1 yr?1. This study suggests that, with 3‐year harvest cycles, poplar SRC can contribute to agronomic and environmental sustainability not only in terms of its high yield and energy efficiency but also in terms of its positive influence on limiting soil tillage and on the environment, given its low pesticide and nutrient requirements.  相似文献   

3.
Hybrid poplar short‐rotation coppices (SRC) provide feedstocks for bioenergy production and can be established on lands that are suboptimal for food production. The environmental consequences of deploying this production system on marginal agricultural land need to be evaluated, including the investigation of common management practices i.e., fertilization and irrigation. In this work, we evaluated (1) the soil‐atmosphere exchange of carbon dioxide, methane, and nitrous oxide (N2O); (2) the changes in soil organic carbon (SOC) stocks; (3) the gross ammonification and nitrification rates; and (4) the nitrate leaching as affected by the establishment of a hybrid poplar SRC on a marginal agricultural land in southern Germany. Our study covered one 3‐year rotation period and 2 years after the first coppicing. We combined field and laboratory experiments with modeling. The soil N2O emissions decreased from 2.2 kg N2O‐N ha?1 a?1 in the year of SRC establishment to 1.1–1.4 kg N2O‐N ha?1 a?1 after 4 years. Likewise, nitrate leaching reduced from 13 to 1.5–8 kg N ha?1 a?1. Tree coppicing induced a brief pulse of soil N2O flux and marginal effects on gross N turnover rates. Overall, the N losses diminished within 4 years by 80% without fertilization (irrespective of irrigation) and by 40% when 40–50 kg N ha?1 a?1 were applied. Enhanced N losses due to fertilization and the minor effect of fertilization and irrigation on tree growth discourage its use during the first rotation period after SRC establishment. A SOC accrual rate of 0.4 Mg C ha?1 a?1 (uppermost 25 cm, P = 0.2) was observed 5 years after the SRC establishment. Overall, our data suggest that SRC cultivation on marginal agricultural land in the region is a promising option for increasing the share of renewable energy sources due to its net positive environmental effects.  相似文献   

4.
The sexual stage of pathogens governs recombination patterns and often also provides means of surviving the off‐season. Despite its importance for evolutionary potential and between‐season epidemiology, sexual systems have not been carefully investigated for many important pathogens, and what generates variation in successful sexual reproduction of pathogens remains unexplored. We surveyed the sexually produced resting structures (chasmothecia) across 86 natural populations of fungal pathogen Podosphaera plantaginis (Ascomycota) naturally infecting Plantago lanceolata in the Åland archipelago, southwestern Finland. For this pathosystem, these resting structures are a key life‐history stage, as more than half of the local pathogen populations go extinct every winter. We uncovered substantial variation in the level of chasmothecia produced among populations, ranging from complete absence to presence on all infected leaves. We found that chasmothecia developed within clonal isolates (single‐strain cultures). Additionally, these clonal isolates all contained both MAT1‐1‐1 and MAT1‐2‐1 genes that characterize mating types in Ascomycetes. Hence, contrary to expectations, we conclude that this species is capable of haploid selfing. In controlled inoculations, we discovered that pathogen genotypes varied in their tendency to produce chasmothecia. Production of chasmothecia was also affected by ambient temperature (E) and by the interaction between temperature and pathogen genotype (G × E). These G, E and G × E effects found both at a European scale and within the Åland archipelago may partly explain the high variability observed among populations in chasmothecia levels. Consequently, they may be key drivers of the evolutionary potential and epidemiology of this highly dynamic pathosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号