首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aim  We searched for relationships between latitude and both the geographic range size and host specificity of fleas parasitic on small mammals. This provided a test for the hypothesis that specialization is lower, and thus niche breadth is wider, in high-latitude species than in their counterparts at lower latitudes.
Location  We used data on the host specificity and geographic range size of 120 Palaearctic flea species (Siphonaptera) parasitic on small mammals (Soricomorpha, Lagomorpha and Rodentia). Data on host specificity were taken from 33 regions, whereas data on geographic ranges covered the entire distribution of the 120 species.
Methods  Our analyses controlled for the potentially confounding effects of phylogenetic relationships among flea species by means of the independent-contrasts method. We used regressions and structural equation modelling to determine whether the latitudinal position of the geographic range of a flea covaried with either the size of its range or its host specificity. The latter was measured as the number of host species used, as well as by an index providing the average (and variance in) taxonomic distinctness among the host species used by a flea.
Results  Geographic range size was positively correlated with the position of the centre of the range; in other words, fleas with more northerly distributions had larger geographic ranges. Although the number of host species used by a flea did not vary with latitude, both the mean taxonomic distinctness among host species used and its variance increased significantly towards higher latitudes.
Main conclusions  The results indicate that niche breadth in fleas, measured in terms of both its spatial (geographic range size) and biological (host specificity) components, increases at higher latitudes. These findings are compatible with the predictions of recent hypotheses about latitudinal gradients.  相似文献   

2.
Aim  To explore and identify probable mechanisms contributing to the relationships among body size, dietary niche breadth and mean, minimum, maximum and range of prey size in predaceous lizards.
Location  Our data set includes species from tropical rainforests, semi-arid regions of Brazil, and from deserts of the south-western United States, Australia and the Kalahari of Africa.
Methods  We calculated phylogenetic and non-phylogenetic regressions among predator body size, dietary breath and various prey size measures.
Results  We found a negative association between body size and dietary niche breadth in 159 lizard species sampled across most evolutionary lineages of squamate reptiles and across major continents and habitats. We also show that mean, minimum, maximum and range of prey size were positively associated with body size.
Main conclusions  Our results suggest not only that larger lizards tend to eat larger prey, but in doing so offset their use of smaller prey. Reduction of dietary niche breadth with increased body size in these lizards suggests that large predators target large and more profitable prey. Consequently, the negative association between body size and niche breadth in predators most likely results from optimal foraging. Though this result may appear paradoxical and runs counter to previous studies, resources for predators may be predictably more limited than resources for herbivores, thus driving selection for more profitable prey.  相似文献   

3.
A modification of Gladfelter-Johnson's index to measure trophic niche breadth using occurrence frequencies is proposed, in order to make it more sensitive to different resource use patterns. The new index ranges from 0 to 1 and measures niche breadth in a guild context.  相似文献   

4.
5.
The analysis of a local community of forest passerines (13 species) using phylogenetic contrasts shows a correlation between body size of bird species and mean prey size, minimum prey size, maximum prey size and the size range of dietary items. This suggests that larger birds drop small prey taxa from their prey list, because of the difficulty of capturing very small prey, for energetic reasons or because of microhabitat usage. We find some support for the third hypothesis. Dietary niche breadth calculated across prey taxa is not related to body size. Dietary niche breadth, however, is correlated with size-corrected measurements of the bill and locomotor apparatus. Long and slender bills increase the dietary niche breadth. Thus subtle differences constrain foraging and the techniques of extracting certain prey taxa form crevices. Dietary niche breadth and foraging diversity are positively correlated with population density: at least locally dietary generalists occur at higher breeding densities than specialists.  相似文献   

6.
7.
  • Species responses to climate change will be primarily driven by their environmental tolerance range, or niche breadth, with the expectation that broad niches will increase resilience. Niche breadth is expected to be larger in more heterogeneous environments and moderated by life history. Niche breadth also varies across life stages. Therefore, the life stage with the narrowest niche may serve as the best predictor of climatic vulnerability. To investigate the relationship between niche breadth, climate and life stage we identify germination niche breadth for dormant and non‐dormant seeds in multiple populations of three milkweed (Asclepias) species.
  • Complementary trials evaluated germination under conditions simulating historic and predicted future climate by varying cold–moist stratification temperature, length and incubation temperature. Germination niche breadth was derived from germination evenness across treatments (Levins Bn), with stratified seeds considered less dormant than non‐stratified seeds.
  • Germination response varies significantly among species, populations and treatments. Cold–moist stratification ≥4 weeks (1–3 °C) followed by incubation at 25/15 °C+ achieves peak germination for most populations. Germination niche breadth significantly expands following stratification and interacts significantly with latitude of origin. Interestingly, two species display a positive relationship between niche breadth and latitude, while the third presents a concave quadratic relationship.
  • Germination niche breadth significantly varies by species, latitude and population, suggesting an interaction between source climate, life history and site‐specific factors. Results contribute to our understanding of inter‐ and intraspecific variation in germination, underscore the role of dormancy in germination niche breadth, and have implications for prioritising and conserving species under climate change.
  相似文献   

8.
Data for five closely related species of gammarid crustaceans are used to examine interspecific relationships between the breadth of fundamental tolerance or capacity and geographical range size. Gammarus duebeni is, almost without exception, the most tolerant species and that with the best physiological performance. Although there is some limited variation, the remaining species can be ranked broadly in the sequence G. zaddachi  > G. salinus  >  G. oceanicus > G. locusta . The wide tolerance and high performance of G. duebeni is associated with the occupation of a wider range of environmental 'types' than any other of the species. In terms of geographical range size, the species can be ranked from most to least widespread in the sequence G. oceanicus  > G. duebeni  >  G. zaddachi  >  G. salinus  >  G. locusta . This provides little support for Brown's hypothesis, or the argument that the more widely distributed species within a taxonomic assemblage also tend to have the widest fundamental niches. However, if marine ( G. oceanicus and G. locusta ) and estuarine ( G. duebeni , G. zaddachi , G. salinus) species are considered separately, then in each case the species with the largest geographical range is also the most tolerant/best performer. In this sense, the jack-of-all-trades is the master-of-all, rather than the master-of-none.  相似文献   

9.
Species often harbour large amounts of phenotypic variation in ecologically important traits, and some of this variation is genetically based. Understanding how this genetic variation is spatially structured can help to understand species' ecological tolerances and range limits. We modelled the climate envelopes of Arabidopsis thaliana genotypes, ranging from early- to late-flowering, as a function of several climatic variables. We found that genotypes with contrasting alleles at individual flowering time loci differed significantly in potential range size and niche breadth. We also found that later flowering genotypes had more restricted range potentials and narrower niche breadths than earlier flowering genotypes, indicating that local selection on flowering can constrain or enhance the ability of populations to colonise other areas. Our study demonstrates how climate envelope models that incorporate ecologically important genetic variation can provide insights into the macroecology of a species, which is important to understand its responses to changing environments.  相似文献   

10.
The regional occupancy and local abundance of species are affected by various species traits, but their relative effects are poorly understood. We studied the relationships between species traits and occupancy (i.e., proportion of sites occupied) or abundance (i.e., mean local abundance at occupied sites) of stream invertebrates using small‐grained data (i.e., local stream sites) across a large spatial extent (i.e., three drainage basins). We found a significant, yet rather weak, linear relationship between occupancy and abundance. However, occupancy was strongly related to niche position (NP), but it showed a weaker relationship with niche breadth (NB). Abundance was at best weakly related to these explanatory niche‐based variables. Biological traits, including feeding modes, habit traits, dispersal modes and body size classes, were generally less important in accounting for variation in occupancy and abundance. Our findings showed that the regional occupancy of stream invertebrate species is mostly related to niche characteristics, in particular, NP. However, the effects of NB on occupancy were affected by the measure itself. We conclude that niche characteristics determine the regional occupancy of species at relatively large spatial extents, suggesting that species distributions are determined by environmental variation among sites.  相似文献   

11.
A major focus of invasion biology is understanding the traits associated with introduction success. Most studies assess these traits in the invaded region, while only few compare nonindigenous species to the pool of potential invaders in their native region. We focused on the niche breadth hypothesis, commonly evoked but seldom tested, which states that generalist species are more likely to become introduced as they are capable of thriving under a wide set of conditions. Based on the massive introduction of tropical species into the Mediterranean via the Suez Canal (Lessepsian migration), we defined ascidians in the Red Sea as the pool of potential invaders. We constructed unique settlement plates, each representing six different niches, to assess ascidian niche breadth, and deployed them in similar habitats in the native and invaded regions. For each species found on plates, we evaluated its abundance, relative abundance across successional stages, and niche breadth, and then compared (1) species in the Red Sea known to have been introduced into the Mediterranean (Lessepsian species) and those not known from the Mediterranean (non‐Lessepsian); and (2) nonindigenous and indigenous species in the Mediterranean. Lessepsian species identified on plates in the Red Sea demonstrated wider niche breadth than non‐Lessepsian species, supporting the niche breadth hypothesis within the native region. No differences were found between Lessepsian and non‐Lessepsian species in species abundance and successional stages. In the Mediterranean, nonindigenous species numerically dominated the settlement plates. This precluded robust comparisons of niche breadth between nonindigenous and indigenous species in the invaded region. In conclusion, using Red Sea ascidians as the pool of potential invaders, we found clear evidence supporting the niche breadth hypothesis in the native region. We suggest that such patterns may often be obscured when conducting trait‐based studies in the invaded regions alone. Our findings indicate that quantifying the niche breadth of species in their native regions will improve estimates of invasiveness potential.  相似文献   

12.
Distribution, abundance and niche breadth of birds: scale matters   总被引:1,自引:0,他引:1  
We used local habitat niche breadth, local abundance and body size of non-passerine afrotropical birds in Tsavo East National Park (Kenya) to predict species distributional ranges in Kenya and across Africa. Univariate analysis revealed a significant positive correlation between local abundance and distribution only on the scale of Kenya. Performing a multiple regression analysis, local abundance, local habitat niche breadth and body size explained a significant part of the variance in bird distribution, again only on the Kenyan scale. From these results, we speculate that on continental scales distributions may be more influenced by macroclimatic conditions and historical factors, whereas distributions on regional scales are predominantly influenced by ecological factors.  相似文献   

13.
The butterfly fauna on the Korean peninsula are comprised of both the Palearctic and Oriental species. We hypothesized that the Oriental species (immigrated across the sea) tend to have a wider niche breadth compared with the Palearctic species (immigrated from the continent) since the former migrates long distances across the sea and has to adapt to new environments. We tested this hypothesis using Korean butterfly data on distribution, habitat, food and life history traits. The distribution and ecological traits such as habitat breadth, overwintering stage, and voltinism of the Oriental species were found to be significantly different from the Palearctic species. However, the diet breadth and food plant type were not different. These results partly confirm the peninsula niche breadth hypothesis, which predicted that Oriental species have a broader niche breadth than Palearctic species.  相似文献   

14.
The objectives of the present study are to describe and compare the brachyuran community of rocky shores within the Central Portuguese coast and to examine the zonation patterns of the most representative species. For this, randomly placed transects were surveyed to obtain crab counts according to microhabitat and intertidal level. Repeated sampling in two different shores during two different seasons provided spatial and temporal replication for zonation analyses. Seven species were registered: Pachygrapsus marmoratus, Eriphia verrucosa, Xantho incisus, Carcinus maenas, Necora puber, Pirimela denticulata and Pilumnus hirtellus. Species density rankings are the same at both localities, but the less exposed shore presents higher diversity. While most species are mainly confined to specific microhabitats in the lower level, P. marmoratus and E. verrucosa can exploit the whole intertidal range. Regardless of shore and season, E. verrucosa is more abundant in the lower intertidal levels, while no such zonation patterns were recorded for P. marmoratus. Initial predictions concerning the effect of wave exposure and temperature on the zonation of those species are not validated after analysing the factorial model proposed. Between-shore contrasts were found instead, with higher densities recorded in the more exposed locality for both species. Possible causes of the observed patterns are discussed.  相似文献   

15.
Aim  Range size and niche breadth have been found to be positively related to abundance in many plant and animal groups. We tested these two relationships for the tree species flora of Central Europe; that is, for all 25 species that have their distribution centre in this region.
Location  Eurasia, with a focus on Central Europe.
Methods  We devised an abundance and niche variable classification system to transform the existing literature data into a semi-quantitative assessment of abundance and niche breadth (in terms of soil chemical and physical variables, and temperature) for each of the 25 tree species. Regression analyses between abundance, range size and niche breadth were conducted for the entire species sample and for subsets of species defined by their ecology or phylogeny.
Results  The relationship between abundance in the distribution centre and range size was weak for the Central European tree species. However, significant abundance–range size relationships were found for phylogenetically or ecologically more homogenous species groups (for example for trees of the order Rosales and for mid-successional tree species). Realized niche breadth was positively related to range size in the case of temperature, but not for soil-related variables. No relationship existed between niche breadth and abundance in the distribution centre.
Main conclusions  We hypothesize that the weak relationship between abundance and range size is primarily a consequence of substantial ecological and phylogenetic heterogeneity within this rather species-poor assemblage. The positive relationship between realized temperature niche breadth and range size emphasizes the strong influence of climatic variables on plant distribution patterns over continental or global scales.  相似文献   

16.
The introduction of non‐native species to new locations is a growing global phenomenon with major negative effects on native species and biodiversity. Such introductions potentially bring competitors into contact leading to partial or total species replacements. This creates an opportunity to study novel species interactions as they occur, with the potential to address the strength of inter‐ and intraspecific interactions, most notably competition. Such potential has often not been realized, however, due to the difficulties inherent in detecting rapid and spatially expansive species interactions under natural field conditions. The invasive amphipod crustacean Gammarus pulex has replaced a native species, Gammarus duebeni celticus, in river and lake systems across Europe. This replacement process is at least partially driven by differential parasitism, cannibalism, and intraguild predation, but the role of interspecific competition has yet to be resolved. Here, we examine how abundance of an invasive species may affect spatial niche breadth of a native congeneric species. We base our analyses of niche breadth on ordination and factor analysis of biological community and physical parameters, respectively, constituting a summative, multidimensional approach to niche breadth along environmental gradients. Results derived from biological and environmental niche criteria were consistent, although interspecific effects were stronger using the biological niche approach. We show that the niche breadth of the native species is constrained as abundance of the invader increases, but the converse effect does not occur. We conclude that the interaction between invasive G. pulex and native G. d. celticus under natural conditions is consistent with strong interspecific competition whereby a native, weaker competitor is replaced by a superior invasive competitor. This study indicates a strong role of interspecific competition, alongside other known interactions such as differential intraguild predation, in rapid and expansive species replacements following biological invasions.  相似文献   

17.
18.
Large carnivore community structure is affected by direct and indirect interactions between intra-guild members. Co-existence between different species within a carnivore guild may occur through diet, habitat or temporal partitioning. Since carnivore species are highly dependent on availability and accessibility of prey, diet partitioning is potentially one of the most important mechanisms in allowing carnivores to co-exist. Intra-guild interactions may vary over time as carnivore prey preference and diet overlap can change due to seasonal changes in resource availability. We conducted scat analysis to compare the seasonal changes in prey preference, diet partitioning and niche breadth of four large carnivore species, namely leopard Panthera pardus, spotted hyena Crocuta crocuta, brown hyena Parahyaena brunnea and wild dog Lycaon pictus in central Tuli, Botswana. Large carnivores in central Tuli display a high dietary overlap, with spotted hyena and brown hyena displaying almost complete dietary overlap and the other carnivore species displaying slightly lower but still significant dietary overlap. Dietary niche breadth for both hyena species was high possibly due to their flexible foraging strategies, including scavenging, while leopard and wild dog showed a relatively low niche breadth, suggesting a more specialised diet. High dietary overlap in central Tuli is possibly explained by the high abundance of prey species in the area thereby reducing competition pressure between carnivore species. Our research highlights the need to assess the influence of diet partitioning in structuring large carnivore communities across multiple study sites, by demonstrating that in prey rich environments, the need for diet partitioning by carnivores to avoid competition may be limited.  相似文献   

19.
20.

Aim

The breadth of ecological niches and dispersal abilities have long been discussed as important determinants of species' range sizes. However, studies directly comparing the relative effects of both factors are rare, taxonomically biased and revealed inconsistent results.

Location

Europe.

Time Period

Cenozoic.

Major Taxa

Butterflies, Lepidoptera.

Methods

We relate climate, diet and habitat niche breadth and two indicators of dispersal ability, wingspan and a dispersal tendency index, to the global range size of 369 European-centred butterfly species. The relative effects of these five predictors and their variation across the butterfly phylogeny were assessed by means of phylogenetic generalized least squares models and phylogenetically weighted regressions respectively.

Results

Climate niche breadth was the most important single predictor, followed by habitat and diet niche breadth, while dispersal tendency and wingspan showed no relation to species' range size. All predictors together explained 59% of the variation in butterfly range size. However, the effects of each predictor varied considerably across families and genera.

Main Conclusions

Range sizes of European-centred butterflies are strongly correlated with ecological niche breadth but apparently independent of dispersal ability. The magnitude of range size–niche breadth relationships is not stationary across the phylogeny and is often negatively correlated across the different dimensions of the ecological niche. This variation limits the generalizability of range size–trait relationships across broad taxonomic groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号