首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.

The myelin proteolipid protein gene (PLP1) encodes the most abundant protein in CNS myelin. Expression of the gene must be strictly regulated, as evidenced by human X-linked leukodystrophies resulting from variations in PLP1 copy number, including elevated dosages as well as deletions. Recently, we showed that the wmN1 region in human PLP1 (hPLP1) intron 1 is required to promote high levels of an hPLP1-lacZ transgene in mice, using a Cre-lox approach. The current study tests whether loss of the wmN1 region from a related transgene containing mouse Plp1 (mPlp1) DNA produces similar results. In addition, we investigated the effects of loss of another region (ASE) in mPlp1 intron 1. Previous studies have shown that the ASE is required to promote high levels of mPlp1-lacZ expression by transfection analysis, but had no effect when removed from the native gene in mouse. Whether this is due to compensation by another regulatory element in mPlp1 that was not included in the mPlp1-lacZ constructs, or to differences in methodology, is unclear. Two transgenic mouse lines were generated that harbor mPLP(+)Z/FL. The parental transgene utilizes mPlp1 sequences (proximal 2.3 kb of 5?-flanking DNA to the first 37 bp of exon 2) to drive expression of a lacZ reporter cassette. Here we demonstrate that mPLP(+)Z/FL is expressed in oligodendrocytes, oligodendrocyte precursor cells, olfactory ensheathing cells and neurons in brain, and Schwann cells in sciatic nerve. Loss of the wmN1 region from the parental transgene abolished expression, whereas removal of the ASE had no effect.

  相似文献   

3.
Myelin proteolipid protein gene (Plp1) expression is temporally regulated in brain, which peaks during the active myelination period of CNS development. Previous studies with Plp1‐lacZ transgenic mice demonstrated that (mouse) Plp1 intron 1 DNA is required for high levels of expression in oligodendrocytes. Deletion‐transfection analysis revealed the intron contains a single positive regulatory element operative in the N20.1 oligodendroglial cell line, which was named ASE (a ntis ilencer/e nhancer) based on its functional properties in these cells. To investigate the role of the ASE in vivo, the element was deleted from the native gene in mouse using a Cre/lox strategy. Although removal of the ASE from Plp1‐lacZ constructs profoundly decreased expression in transfected oligodendroglial cell lines (N20.1 and Oli‐neu), the element was dispensable to achieve normal levels of Plp1 gene expression in mouse during development (except perhaps at postnatal day 15) and throughout the remyelination period following cuprizone‐induced (acute) demyelination. Thus, it is possible that the ASE is non‐functional in vivo, or that loss of the ASE from the native gene in mouse can be compensated for by the presence of other regulatory elements within the Plp1 gene.  相似文献   

4.
PMD (Pelizaeus–Merzbacher disease) is a rare neurodegenerative disorder that impairs motor and cognitive functions and is associated with a shortened lifespan. The cause of PMD is mutations of the PLP1 [proteolipid protein 1 gene (human)] gene. Transgenic mice with increased Plp1 [proteolipid protein 1 gene (non-human)] copy number model most aspects of PMD patients with duplications. Hypomyelination and demyelination are believed to cause the neurological abnormalities in mammals with PLP1 duplications. We show, for the first time, intense microglial reactivity throughout the grey and white matter of a transgenic mouse line with increased copy number of the native Plp1 gene. Activated microglia in the white and grey matter of transgenic mice are found as early as postnatal day 7, before myelin commences in normal cerebra. This finding indicates that degeneration of myelin does not cause the microglial response. Microglial numbers are doubled due to in situ proliferation. Compared with the jp (jimpy) mouse, which has much more oligodendrocyte death and hardly any myelin, microglia in the overexpressors show a more dramatic microglial reactivity than jp, especially in the grey matter. Predictably, many classical markers of an inflammatory response, including TNF-α (tumour necrosis factor-α) and IL-6, are significantly up-regulated manyfold. Because inflammation is believed to contribute to axonal degeneration in multiple sclerosis and other neurodegenerative diseases, inflammation in mammals with increased Plp1 gene dosage may also contribute to axonal degeneration described in patients and rodents with PLP1 increased gene dosage.  相似文献   

5.
The myelin proteolipid protein (Plp) gene encodes the most abundant protein found in mature CNS myelin. Expression of the gene is regulated spatiotemporally, with maximal expression occurring in oligodendrocytes during the myelination period of CNS development. Plp gene expression is tightly controlled. Misregulation of the gene in humans can result in the dysmyelinating disorder Pelizaeus-Merzbacher disease, and in transgenic mice carrying a null mutation or extra copies of the gene can result in a variety of conditions, from late onset demyelination and axonopathy, to severe early onset dysmyelination. In this study we have examined the effects of Plp intron 1 DNA in mediating proper developmental expression of Plp-lacZ fusion genes in transgenic mice. Our results reveal the importance of Plp intron 1 sequences in instigating the expected surge in Plp-lacZ gene activity during (and following) the active myelination period of brain development. Transgene expression was also detected in the testis (Leydig cells), however, the presence or absence of Plp intron 1 sequences had no effect on the temporal profile in the testis. Surprisingly, expression of the transgene missing Plp intron 1 DNA was always higher in the testis, as compared to the brain, in all of the transgenic lines generated.  相似文献   

6.
PMD (Pelizaeus–Merzbacher disease), a CNS (central nervous system) disease characterized by shortened lifespan and severe neural dysfunction, is caused by mutations of the PLP1 (X-linked myelin proteolipid protein) gene. The majority of human PLP1 mutations are caused by duplications; almost all others are caused by missense mutations. The cellular events leading to the phenotype are unknown. The same mutations in non-humans make them ideal models to study the mechanisms that cause neurological sequelae. In the present study we show that mice with Plp1 duplications (Plp1tg) have major mitochondrial deficits with a 50% reduction in ATP, a drastically reduced mitochondrial membrane potential and increased numbers of mitochondria. In contrast, the jp (jimpy) mouse with a Plp1 missense mutation exhibits normal mitochondrial function. We show that PLP in the Plp1tg mice and in Plp1-transfected cells is targeted to mitochondria. PLP has motifs permissive for insertion into mitochondria and deletions near its N-terminus prevent its co-localization to mitochondria. These novel data show that Plp1 missense mutations and duplications of the native Plp1 gene initiate uniquely different cellular responses.  相似文献   

7.
8.
9.
10.
11.
12.
In vivo and in vitro gene transfer experiments have suggested that the elements mediating intron recognition differ in mammalian, yeast and plant nuclei. Differences in the sequence dependencies, which also exist between dicotyledonous and monocotyledonous nuclei, have prevented some monocot introns from being spliced in dicot nuclei. To locate elements which modulate efficient recognition of introns in dicot nuclei, the maize Adh1 gene has been expressed in full-length and single intron constructs in Nicotiana benthamiana nuclei using an autonomously replicating plant expression vector. Quantitative PCR-Southern analyses indicate that the inefficient splicing of the maize Adh1 intron 1 (57% AU) in these dicot nuclei can be dramatically enhanced by increasing the degree of U1 snRNA complementarity at the 5′ splice site. This indicates that the 5′ splice site plays a significant role in defining the splicing efficiency of an intron in dicot nuclei and that, most importantly, the remainder of this monocot intron contains no elements which inhibit its accurate recognition in dicot nuclei. Deletions in intron 3 (66% AU) which effectively move the 3′ boundary between AU-rich intron and GC-rich exon sequences strongly activate a cryptic upstream splice site; those which do not reposition this boundary activate a downstream cryptic splice site. This suggests that 3′ splice site selection in dicot nuclei is extremely flexible and not dependent on strict sequence requirements but rather on the transition points between introns and exons. Our results are consistent with a model in which potential splice sites are selected if they are located upstream (5′ splice site) or downstream (3′ splice site) of AU transition points and not if they are embedded within AU-rich sequences.  相似文献   

13.
《Gene》1998,208(2):279-283
In an effort to obtain a small genomic construct for the generation of a HIRA transgenic mouse, we have isolated and sequenced the Fugu TUPLE1/HIRA gene. We have compared the gene organization and the proteins encoded in pufferfish and human and also searched for conserved DNA sequences that might be important in gene regulation. The pufferfish gene spans approx. 9 kb, which is approx. 11 times smaller than the human gene, owing to the reduced size of the introns. Like its human counterpart, it is organized into 25 exons. The majority of the splice sites are in identical positions to those found in the human gene, however, for three internal exons the positions of the splice sites are not directly comparable. The coding regions are almost identical in size and show a high degree of similarity, especially at the amino and carboxy termini. Comparisons of 5′ and 3′ sequences failed to detect similarities or sequences involved in regulation.  相似文献   

14.
15.
Lee C  Mayfield RD  Harris RA 《PloS one》2010,5(11):e14044

Background

Gamma-aminobutyric acid type B (GABAB) receptors decrease neural activity through G protein signaling. There are two subunits, GABAB1 and GABAB2. Alternative splicing provides GABAB1 with structural and functional diversity. cDNA microarrays showed strong signals from human brain RNA using GABAB1 intron 4 region probes. Therefore, we predicted the existence of novel splice variants.

Methodology/Principal Findings

Based on the probe sequence analysis, we proposed two possible splice variants, GABAB1j and GABAB1k. The existence of human GABAB1j was verified by quantitative real-time PCR, and mouse GABAB1j was found from a microarray probe set based on human GABAB1j sequence. GABAB1j open reading frames (ORF) and expression patterns are not conserved across species, and they do not have any important functional domains except sushi domains. Thus, we focused on another possible splice variant, GABAB1k. After obtaining PCR evidence for GABAB1k existence from human, mouse, and rat, it was cloned from human and mouse by PCR along with three additional isoforms, GABAB1l, GABAB1m, and GABAB1n. Their expression levels by quantitative real-time PCR are relatively low in brain although they may be expressed in specific cell types. GABAB1l and GABAB1m inhibit GABAB receptor-induced G protein-activated inwardly rectifying K+ channel (GIRK) currents at Xenopus oocyte two-electrode voltage clamp system.

Conclusions/Significance

This study supports previous suggestions that intron 4 of GABAB1 gene is a frequent splicing spot across species. Like GABAB1e, GABAB1l and GABAB1m do not have transmembrane domains but have a dimerization motif. So, they also could be secreted and bind GABAB2 dominantly instead of GABAB1a. However, only GABAB1l and GABAB1m are N- and C-terminal truncated splicing variants and impair receptor function. This suggests that the intron 4 containing N-terminal truncation is necessary for the inhibitory action of the new splice variants.  相似文献   

16.
To date, five human metabotropic glutamate (mGlu) 1 receptor splice variants (1a, 1b, 1d, 1f, and 1g) have been described, all of which involve alternative C-terminal splicing. mGlu1a receptor contains a long C-terminal domain (341 amino acids), which has been shown to scaffold with several proteins and contribute to the structure of the post-synaptic density. However, several shorter mGlu1 receptor splice variants lack the sequence required for these interactions, and no major functional differences between these short splice variants have been described. By using RT-PCR we have shown that two human melanoma cell lines express both mGlu1a and mGlu1b receptors. In addition, using 3′RACE, we identified three previously unknown mGlu1 receptor mRNAs. Two differ in the length of their 3′ untranslated region (UTR), and encode the same predicted protein as mGlu1g receptor—the shortest of all mGlu1 receptor splice variants. The third mRNA, named mGlu1h, encodes a predicted C-terminal splice variant of 10 additional amino acids. mGlu1h mRNA was observed in two different melanoma cell lines and is overexpressed, compared with melanoma precursor cells, melanocytes. Most importantly, this new splice variant, mGlu1h receptor, is encoded by two previously unidentified exons located within the human GRM1 gene. Additionally, these new exons are found exclusively within the GRM1 genes of higher primates and are highly conserved. Therefore, we hypothesize that mGlu1h receptors play a distinct role in primate glutamatergic signaling.  相似文献   

17.
18.
The splice site mutation in the IKBKAP gene coding for IKAP protein leads to the tissue-specific skipping of exon 20, with concomitant reduction in IKAP protein production. This causes the neurodevelopmental, autosomal-recessive genetic disorder - Familial Dysautonomia (FD). The molecular hallmark of FD is the severe reduction of IKAP protein in the nervous system that is believed to be the main reason for the devastating symptoms of this disease. Our recent studies showed that in the brain of two FD patients, genes linked to oligodendrocyte differentiation and/or myelin formation are significantly downregulated, implicating IKAP in the process of myelination. However, due to the scarcity of FD patient tissues, these results awaited further validation in other models. Recently, two FD mouse models that faithfully recapitulate FD were generated, with two types of mutations resulting in severely low levels of IKAP expression. Here we demonstrate that IKAP deficiency in these FD mouse models affects a similar set of genes as in FD patients'' brains. In addition, we identified two new IKAP target genes involved in oligodendrocyte cells differentiation and myelination, further underscoring the essential role of IKAP in this process. We also provide proof that IKAP expression is needed cell-autonomously for the regulation of expression of genes involved in myelin formation since knockdown of IKAP in the Oli-neu oligodendrocyte precursor cell line results in similar deficiencies. Further analyses of these two experimental models will compensate for the lack of human postmortem tissues and will advance our understanding of the role of IKAP in myelination and the disease pathology.  相似文献   

19.
Many eukaryotic cell surface proteins are anchored to the membrane with glycosylphosphatidylinositol (GPI) that is covalently linked to the carboxyl-terminus. A Saccharomyces cerevisiae gaa1 mutant is defective in posttranslational attachment of GPI to proteins. A recent report demonstrated that the GPAA1 gene encodes a component of a transamidase that mediates GPI-anchor attachment. Here, we report structures and chromosome loci of human and mouse GPAA1 genes. Both genes consist of twelve exons that span about 4 kb. Human and mouse GPAA1s are located at 8q24.3 and 15E, respectively. There is a human pseudo GPAA1 gene (GPAA1P1) that is located at 2q12-->q14. Introns 8 of human and mouse GPAA1s were minor class introns bearing AT at the 5' splice sites and AC and AT at the 3' splice sites, respectively. The 3' splice sites of corresponding introns of African green monkey, Chinese hamster, dog and rat were AC, AT, AT and AA, respectively. The mouse GPAA1 gene (Gpaa1) bearing AG at the 3' splice site prepared by site-directed mutagenesis was functional, indicating that any nucleotide is allowed at the 3' end of a minor class intron.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号