首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many biodiversity hotspots are located in montane regions, especially in the tropics. A possible explanation for this pattern is that the narrow thermal tolerances of tropical species and greater climatic stratification of tropical mountains create more opportunities for climate-associated parapatric or allopatric speciation in the tropics relative to the temperate zone. However, it is unclear whether a general relationship exists among latitude, climatic zonation and the ecology of speciation. Recent taxon-specific studies obtained different results regarding the role of climate in speciation in tropical versus temperate areas. Here, we quantify overlap in the climatic distributions of 93 pairs of sister species of mammals, birds, amphibians and reptiles restricted to either the New World tropics or to the Northern temperate zone. We show that elevational ranges of tropical- and temperate-zone species do not differ from one another, yet the temperature range experienced by species in the temperate zone is greater than for those in the tropics. Moreover, tropical sister species tend to exhibit greater similarity in their climatic distributions than temperate sister species. This pattern suggests that evolutionary conservatism in the thermal niches of tropical taxa, coupled with the greater thermal zonation of tropical mountains, may result in increased opportunities for allopatric isolation, speciation and the accumulation of species in tropical montane regions. Our study exemplifies the power of combining phylogenetic and spatial datasets of global climatic variation to explore evolutionary (rather than purely ecological) explanations for the high biodiversity of tropical montane regions.  相似文献   

2.
Snake diversity varies by at least two orders of magnitude among extant lineages, with numerous groups containing only one or two species, and several young clades exhibiting exceptional richness (>700 taxa). With a phylogeny containing all known families and subfamilies, we find that these patterns cannot be explained by background rates of speciation and extinction. The majority of diversity appears to derive from a radiation within the superfamily Colubroidea, potentially stemming from the colonization of new areas and the evolution of advanced venom-delivery systems. In contrast, negative relationships between clade age, clade size, and diversification rate suggest the potential for possible bias in estimated diversification rates, interpreted by some recent authors as support for ecologically mediated limits on diversity. However, evidence from the fossil record indicates that numerous lineages were far more diverse in the past, and that extinction has had an important impact on extant diversity patterns. Thus, failure to adequately account for extinction appears to prevent both rate- and diversity-limited models from fully characterizing richness dynamics in snakes. We suggest that clade-level extinction may provide a key mechanism for explaining negative or hump-shaped relationships between clade age and diversity, and the prevalence of ancient, species-poor lineages in numerous groups.  相似文献   

3.
4.
Comparing niche divergence among closely related taxa can yield important insights into the ecological distinctiveness of genetically similar forms, and identify the processes that are responsible for diversification in such organisms. Here, we apply newly developed techniques for analysing niche divergence to assess how ecologically distinct a group of closely related rattlesnakes (Sistrurus sp.) are and to explore the role that niche divergence may have played in their diversification. We find that all taxa even the most recently evolved subspecies (approximately 100,000 years old) are now ecologically distinct, implying a role for ecology in the diversification process. Statistical analysis based on comparisons with null models show that niche divergence between forms is more common than niche conservation. Finally, there is nonlinear relationship between phylogenetic and niche divergence in this group whereby niche divergence develops more rapidly between recently diverged subspecies than more distantly related forms. Overall, our results argue that ecology may play an important role in the diversification process in these snakes.  相似文献   

5.
Species-area relationships (SARs) have mostly been treated from an ecological perspective, focusing on immigration, local extinction and resource-based limits to species coexistence. However, a full understanding across large regions is impossible without also considering speciation and global extinction. Rates of both speciation and extinction are known to be strongly affected by area and thus should contribute to spatial patterns of diversity. Here, we explore how variation in diversification rates and ecologically mediated diversity limits among regions of different sizes can result in the formation of SARs. We explain how this area-related variation in diversification can be caused by either the direct effects of area or the effects of factors that are highly correlated with area, such as habitat diversity and population size. We also review environmental, clade-specific and historical factors that affect diversification and diversity limits but are not highly correlated with region area, and thus are likely to cause scatter in observed SARs. We present new analyses using data on the distributions, ages and traits of mammalian species to illustrate these mechanisms; in doing so we provide an integrated perspective on the evolutionary processes shaping SARs.  相似文献   

6.
7.
物种与物种多样性   总被引:37,自引:4,他引:37  
周红章 《生物多样性》2000,8(2):215-226
本文首先讨论生物物种的科学概念和生物学本质,分析物种客观存在的自然属性和物种概念的局限性,认为物种的生物学属性和物种多样性的科学属性之间有着本质联系。物种多样性研究的实质是研究生物物种的生物学多样性。度量物种多样性程度有多种方法,但物种数目是物种多样性程度最直接、也是最基本的表达,估计物种多样性数目是当前国际上物种多样性研究的核心与热点内容。物种多样性产生的根源是物种形成,物种绝灭速率是维持物种多样性的关键因素。本文简要总结了物种形成与绝灭的基本模式和机制,通过分析生物地理区系与物种多样性研究的密切关系,说明物种的区系成份分析是物种多样性大尺度格局研究的重要内容。  相似文献   

8.
The tenet that ecological opportunity drives adaptive diversification has been central to theories of speciation since Darwin, yet no widely accepted definition or mechanistic framework for the concept currently exists. We propose a definition for ecological opportunity that provides an explicit mechanism for its action. In our formulation, ecological opportunity refers to environmental conditions that both permit the persistence of a lineage within a community, as well as generate divergent natural selection within that lineage. Thus, ecological opportunity arises from two fundamental elements: (1) niche availability, the ability of a population with a phenotype previously absent from a community to persist within that community and (2) niche discordance, the diversifying selection generated by the adaptive mismatch between a population's niche‐related traits and the newly encountered ecological conditions. Evolutionary response to ecological opportunity is primarily governed by (1) spatiotemporal structure of ecological opportunity, which influences dynamics of selection and development of reproductive isolation and (2) diversification potential, the biological properties of a lineage that determine its capacity to diversify. Diversification under ecological opportunity proceeds as an increase in niche breadth, development of intraspecific ecotypes, speciation, and additional cycles of diversification that may themselves be triggered by speciation. Extensive ecological opportunity may exist in depauperate communities, but it is unclear whether ecological opportunity abates in species‐rich communities. Because ecological opportunity should generally increase during times of rapid and multifarious environmental change, human activities may currently be generating elevated ecological opportunity – but so far little work has directly addressed this topic. Our framework highlights the need for greater synthesis of community ecology and evolutionary biology, unifying the four major components of the concept of ecological opportunity.  相似文献   

9.
Understanding the mechanisms driving declines in biodiversity with latitude requires assessing if there are ecological limits to the number of species that can coexist, and if these limits vary with latitude, both of which are long‐standing and currently debated questions. Here I show that diversification of North American mammals across the Cenozoic Era slowed as diversity increased. This damping of diversification rates indicates ecological limitation, which occurred even though diversity fluctuated through time and was almost never at an equilibrium ‘saturation’ point. The estimated environmental carrying capacity was correlated with global temperature positively at high latitudes and negatively at low latitudes. Geographical variation in how standing diversity affects diversification rates could help explain the latitudinal biodiversity gradient as well as changes in the strength of the gradient over time.  相似文献   

10.
Changes in diversification patterns estimated from phylogenetic trees are an important source of information about the dynamics of evolution. To study the diversification of mammals, we reconstructed phylogenetic trees of 29 families and fitted both constant-rate and variable-rate models of diversification. In addition, we investigated the effect of clock models and phylogenetic reconstruction problems on diversification analyses. We observed, first, that none of the families increased its diversification rate during the last few million years, including the Pleistocene. Furthermore, we detected a decrease in diversification that, after application of different tests, was significant only for a minority of families. However, when diversification variation was analysed in a combined tree of all families, a global decline in diversification became significant. Therefore, although distorted by some methodological artefacts, we found an underlying signal of gradually decreasing diversification that suggests that ecological factors may have shaped the recent diversification of mammals.  相似文献   

11.
Determinants of contemporary patterns of diversity, particularly those spanning extensive latitudinal gradients, are some of the most intensely debated issues in ecology. Recently, focus has shifted from a contemporary environmental perspective to a historical one in an attempt to better understand the construction of latitudinal gradients. Although the vast majority of research on historical mechanisms has focused on tropical niche conservatism (TNC), other historical scenarios could produce similar latitudinal gradients. Herein, I formalize predictions to distinguish between two such historical processes--namely time for speciation (TFS) and TNC--and test relative support based on diversity gradients of New World bats. TFS and TNC are distinctly spatial and environmental mechanisms, respectively. Nonetheless, because of the way that environmental characteristics vary spatially, these two mechanisms are hard to distinguish. Evidence provided herein suggests that TNC has had a more important effect than TFS in determining diversity gradients of New World bats. Indeed, relative effects of different historical mechanisms, as well as relative effects of historical and contemporary environmental determinants, are probably context-dependent. Future research should move away from attempting to identify the mechanism with primacy and instead attempt to understand the particular contexts in which different mechanisms have greater influence on diversity gradients.  相似文献   

12.
The pace of phenotypic diversification during adaptive radiation should decrease as ecological opportunity declines. We test this prediction using phylogenetic comparative analyses of a wide range of morphological traits in Greater Antillean Anolis lizards. We find that the rate of diversification along two important axes of Anolis radiation—body size and limb dimensions—decreased as opportunity declined, with opportunity quantified either as time elapsed in the radiation or as the diversity of competing anole lineages inferred to have been present on an island at different times in the past. Most previous studies of the ecological opportunity hypothesis have focused on the rate of species diversification; our results provide a complementary perspective, indicating that the rate of phenotypic diversification declines with decreasing opportunity in an adaptive radiation.  相似文献   

13.
The ‘central‐peripheral’ hypothesis has provided a baseline for many studies of population dynamics and genetic variability at species distribution limits. Although peripheral populations are often assumed to occur in ecologically marginal conditions, little is known about whether they effectively occur in a distinct ecological niche. A cross‐taxa analysis of 11 Mediterranean vascular plants were studied. We quantified variation in the ecological niche between populations at the northern range limits of species in Mediterranean France and those in the central part of the distribution in continental Spain or Italy in 2013–2014. We analyzed both the macro‐ecological niche where populations occur in terms of broad habitat and altitudinal range and the micro‐ecological niche where individual plants grow in terms of soil and structural biotic and abiotic characteristics. Most species occur in a single broad habitat type common to central and peripheral populations and have a narrower altitudinal range in the latter. In contrast, for the micro‐ecological niche we detected marked variation in several niche parameters among central and peripheral populations. Although many differences are species‐specific some are common to several species. We found a trend towards narrower micro‐niche breadth in peripheral populations. Our results illustrate the importance of studying the precise ecological characteristics where plants grow and the pertinence of a multi‐species approach to correctly assess niche variation. The ecological originality of peripheral populations underlines their evolutionary potential and conservation significance.  相似文献   

14.
There is no agreement among palaeobiologists or biologists as to whether, or to what extent, there are limits on diversification and species numbers. Here, we posit that part of the disagreement stems from: (i) the lack of explicit criteria for defining the relevant species pools, which may be defined phylogenetically, ecologically or geographically; (ii) assumptions that must be made when extrapolating from population-level logistic growth to macro-evolutionary diversification; and (iii) too much emphasis being placed on fixed carrying capacities, rather than taking into account the opportunities for increased species richness on evolutionary timescales, for example, owing to increased biologically available energy, increased habitat complexity and the ability of many clades to better extract resources from the environment, or to broaden their resource base. Thus, we argue that a more effective way of assessing the evidence for and against the ideas of bound versus unbound diversification is through appropriate definition of the relevant species pools, and through explicit modelling of diversity-dependent diversification with time-varying carrying capacities. Here, we show that time-varying carrying capacities, either increases or decreases, can be accommodated through changing intrinsic diversification rates (diversity-independent effects), or changing the effects of crowding (diversity-dependent effects).  相似文献   

15.
16.
Adaptive radiation (AR) theory predicts that groups sharing the same source of ecological opportunity (EO) will experience deterministic species diversification and morphological evolution. Thus, deterministic ecological and morphological evolution should be correlated with deterministic patterns in the tempo and mode of speciation for groups in similar habitats and time periods. We test this hypothesis using well-sampled phylogenies of four squamate groups that colonized the New World (NW) in the Late Oligocene. We use both standard and coalescent models to assess species diversification, as well as likelihood models to examine morphological evolution. All squamate groups show similar early pulses of speciation, as well as diversity-dependent ecological limits on clade size at a continental scale. In contrast, processes of morphological evolution are not easily predictable and do not show similar pulses of early and rapid change. Patterns of morphological and species diversification thus appear uncoupled across these groups. This indicates that the processes that drive diversification and disparification are not mechanistically linked, even among similar groups of taxa experiencing the same sources of EO. It also suggests that processes of phenotypic diversification cannot be predicted solely from the existence of an AR or knowledge of the process of diversification.  相似文献   

17.
18.
19.
为了解三江源国家公园野生兽类的分布现状,2015-2017年对园区进行了实地调查。根据调查结果并参考相关文献资料,三江源国家公园内野生兽类共62种,分别隶属8目19科44属。园区内兽类呈现出物种多样性高,珍稀濒危物种多,特有种多的特点:三江源国家公园内的兽类物种多样性G-F指数为0.77,表明该区域物种多样性处于很高水平。根据中国物种红色名录,20个物种受威胁(极危、濒危和易危),比例为32.26%,远高于国家整体水平;中国或青藏高原特有种29种,占46.77%。三江源国家公园在动物地理区划上属于古北界青藏区,在地理分布型上,以古北界成分为主,东洋界成分为辅,以古北界高山型成分最多,有25种,且资源量大,表明三江源国家公园的兽类以适应高寒气候的特殊种类为主。3个园区的平均动物区系相似性比较结果表明,长江源园区与澜沧江源园区为共同关系,黄河源园区与长江源园区和澜沧江源园区为密切关系。近些年,三江源地区的兽类保护工作取得了很好的效果,并得到国内外认可,本研究结合园区生物多样性和区系特点,根据保护现状,提出了今后的监测保护建议。  相似文献   

20.
Understanding community saturation is fundamental to ecological theory. While investigations of the diversity of evolutionary stable states (ESSs) are widespread, the diversity of communities that have yet to reach an evolutionary endpoint is poorly understood. We use Lotka–Volterra dynamics and trait-based competition to compare the diversity of randomly assembled communities to the diversity of the ESS. We show that, with a large enough founding diversity (whether assembled at once or through sequential invasions), the number of long-time surviving species exceeds that of the ESS. However, the excessive founding diversity required to assemble a saturated community increases rapidly with the dimension of phenotype space. Additionally, traits present in communities resulting from random assembly are more clustered in phenotype space compared to random, although still markedly less ordered than the ESS. By combining theories of random assembly and ESSs we bring a new viewpoint to both the saturation and random assembly literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号