首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Introduction

Encapsulating peritoneal sclerosis (EPS) is a devastating complication of peritoneal dialysis (PD). The pathogenesis is not exactly known and no preventive strategy or targeted medical therapy is available. CCN2 has both pro-fibrotic and pro-angiogenic actions and appears an attractive target. Therefore, we studied peritoneal expression of CCN2, as well as TGFβ1 and VEGF, in different stages of peritoneal fibrosis.

Materials and methods

Sixteen PD patients were investigated and compared to 12 hemodialysis patients and four pre-emptively transplanted patients. Furthermore, expression was investigated in 12 EPS patients in comparison with 13 PD and 12 non-PD patients without EPS. Peritoneal tissue was taken during kidney transplantation procedure or during EPS surgery. In a subset of patients, CCN2 protein levels in peritoneal effluent and plasma were determined. Samples were examined by qPCR, histology, immunohistochemistry, and ELISA.

Results

Peritoneal CCN2 expression was 5-fold higher in PD patients compared to pre-emptively transplanted patients (P<0.05), but did not differ from hemodialysis patients. Peritoneal expression of TGFβ1 and VEGF were not different between the three groups; neither was peritoneal thickness. Peritoneum of EPS patients exhibited increased expression of CCN2 (35-fold, P<0.001), TGFβ1 (24-fold, P<0.05), and VEGF (77-fold, P<0.001) compared to PD patients without EPS. In EPS patients, CCN2 protein was mainly localized in peritoneal endothelial cells and fibroblasts. CCN2 protein levels were significantly higher in peritoneal effluent of EPS patients compared to levels in dialysate of PD patients (12.0±4.5 vs. 0.91±0.92 ng/ml, P<0.01), while plasma CCN2 levels were not increased.

Conclusions

Peritoneal expression of CCN2, TGFβ1, and VEGF are significantly increased in EPS patients. In early stages of peritoneal fibrosis, only CCN2 expression is slightly increased. Peritoneal CCN2 overexpression in EPS patients is a locally driven response. The potential of CCN2 as biomarker and target for CCN2-inhibiting agents to prevent or treat EPS warrants further study.  相似文献   

2.
3.

Aims

In the present study we have investigated the comparative switching propensity of murine peritoneal and splenic B cell subpopulations to IgA in presence of retinoic acid (RA) and TGF-β.

Methods and Results

To study the influence of RA and TGF-β on switching of B cell subpopulations to IgA, peritoneal (B1a, B1b and B2 cells) and splenic (B1a, marginal zone, and B2) B cells from normal BALB/c mice were FACS purified, cultured for 4 days in presence of RA and TGF-β and the number of IgA producing cells was determined by ELISPOT assay or FACS analysis. In presence of TGF-β, peritoneal B1b cells switched to IgA more potently than other peritoneal B cell subpopulations. When TGF-β was combined with retinoic acid (RA), switching to IgA was even more pronounced. Under these conditions, “innate” B cells like peritoneal and splenic B1 cells and MZ B cells produced IgA more readily than B2 cells. Additionally, high frequency of nucleotide exchanges indicating somatic hypermutation in VH regions was observed. Besides IgA induction, RA treatment of sorted PEC and splenic B cells led to expression of gut homing molecules - α4β7 and CCR9. Intraperitoneal transfer of RA-treated B1 cells into Rag1-/- recipients resulted in IgA in serum and gut lavage, most efficiently amongst B1b cell recipients.

Conclusion

Present study demonstrates the differential and synergistic effect of RA and TGF-β on switching of different B cell subpopulations to IgA and establishes the prominence of peritoneal B1b cells in switching to IgA under the influence of these two factors. Our study extends our knowledge about the existing differences among B cell subpopulations with regards to IgA production and indicates towards their differential contribution to gut associated humoral immunity.  相似文献   

4.
The chemokine receptor CXCR3, which was shown to take part in many inflammatory processes, is considered as a Th1 specific marker. Here, we show in a mouse model that CXCR3 expressing CD4(+) cells preferentially migrate to the peritoneal cavity under steady-state conditions. The peritoneal cavity milieu leads to an up-regulated expression of CXCR3. However, blocking of known ligands of this chemokine receptor did not alter the preferential migration. The peritoneal cavity environment also results in an increased percentage of memory cells producing cytokines. Up-regulation of IFNγ production occurs mostly in CXCR3(+) cells considered as Th1, whereas the up-regulation of IL-4 affects mostly in CXCR3(-) cells which are considered as Th2. We conclude that the peritoneal cavity does not change the Th-lineage of the cells, but that domination of this anatomic niche by Th1 cells rather results from preferential migration to this compartment.  相似文献   

5.

Background

The two most relevant pathologies of long-term peritoneal dialysis (PD) are simple sclerosis and encapsulating peritoneal sclerosis (EPS). The histological differentiation of those two entities is difficult. The Aim of the study was to establish a method to standardize and facilitate the differentiation between simple sclerosis and EPS

Methods

We investigated 58 peritoneal biopsies - 31 EPS patients and 27 PD patients. Two blinded investigators analyzed 20 histological characteristics in EPS and PD patients.

Results

The following findings were significantly more common in EPS than in patients on PD without EPS: fibroblast like cells (FLC) (p<0.0001), mesothelial denudation (p<0.0001), decreased cellularity (p = 0.008), fibrin deposits (p<0.03), Fe deposits (p = 0.05), podoplanin vascular (p<0.0001), podoplanin avascular (p<0.0001). Using all predictor variables we trained the classification method Random Forest to categorize future cases. Podoplanin vascular and avascular were taken together (p<0.0001), FLC (p<0.0001), mesothelial denudation (p = 0.0005), calcification (p = 0.0026), acellular areas (p = 0.0094), and fibrin deposits (p = 0.0336) showed up as significantly important predictor variables. Estimated misclassification error rate when classifying new cases turned out to be 14%.

Conclusion

The introduced statistical method allows discriminating between simple sclerosis and EPS. The misclassification error will likely improve with every new case added to the database.  相似文献   

6.
Peritoneal carcinomatosis is common in advanced pancreatic cancer. Despite current standard treatment, patients with this disease until recently were considered incurable. Cancer gene therapy using oncolytic viruses have generated much interest over the past few years. Here, we investigated a new gene directed enzyme prodrug therapy (GDEPT) approach for an oncosuppressive virotherapy strategy using parvovirus H1 (PV-H1) which preferentially replicates and kills malignant cells. Although, PV-H1 is not potent enough to destroy tumors, it represents an attractive vector for cancer gene therapy. We therefore sought to determine whether the suicide gene/prodrug system, yCD/5-FC could be rationally combined to PV-H1 augmenting its intrinsic oncolytic activity for pancreatic cancer prevention and treatment. We showed that the engineered recombinant parvovirus rPVH1-yCD with 5-FC treatment increased significantly the intrinsic cytotoxic effect and resulted in potent induction of apoptosis and tumor growth inhibition in chemosensitive and chemoresistant cells. Additionally, the suicide gene-expressing PV-H1 infection reduced significantly the constitutive activities of NFκB and Akt/PI3K. Combination of their pharmacological inhibitors (MG132 and LY294002) with rPVH1-yCD/5-FC resulted in substantial increase of antitumor activity. In vivo, high and sustained expression of NS1 and yCD was observed in the disseminated tumor nodules and absent in normal tissues. Treatment of mice bearing intraperitoneal pancreatic carcinomatosis with rPVH1-yCD/5-FC resulted in a drastic inhibition of tumor cell spreading and subsequent increase in long-term survival. Together, the presented data show the improved oncolytic activity of wPV-H1 by yCD/5-FC and thus provides valuable effective and promising virotherapy strategy for prevention of tumor recurrence and treatment. In the light of this study, the suicide gene parvovirotherapy approach represents a new weapon in the war against pancreatic cancer. Moreover, these preliminary accomplishments are opening new field for future development of new combined targeted therapies to have a meaningful impact on advanced cancer.  相似文献   

7.
8.
The inflammatory response is driven by signals that recruit and elicit immune cells to areas of tissue damage or infection. The concept of a mononuclear phagocyte system postulates that monocytes circulating in the bloodstream are recruited to inflamed tissues where they give rise to macrophages. A recent publication demonstrated that the large increase in the macrophages observed during infection was the result of the multiplication of these cells rather than the recruitment of blood monocytes. We demonstrated previously that B-1 cells undergo differentiation to acquire a mononuclear phagocyte phenotype in vitro (B-1CDP), and we propose that B-1 cells could be an alternative origin for peritoneal macrophages. A number of recent studies that describe the phagocytic and microbicidal activity of B-1 cells in vitro and in vivo support this hypothesis. Based on these findings, we further investigated the differentiation of B-1 cells into phagocytes in vivo in response to LPS-induced inflammation. Therefore, we investigated the role of B-1 cells in the composition of the peritoneal macrophage population after LPS stimulation using osteopetrotic mice, BALB/Xid mice and the depletion of monocytes/macrophages by clodronate treatment. We show that peritoneal macrophages appear in op/op((-/-)) mice after LPS stimulation and exhibit the same Ig gene rearrangement (VH11) that is often found in B-1 cells. These results strongly suggest that op/op((-/-)) peritoneal "macrophages" are B-1CDP. Similarly, the LPS-induced increase in the macrophage population was observed even following monocyte/macrophage depletion by clodronate. After monocyte/macrophage depletion by clodronate, LPS-elicited macrophages were observed in BALB/Xid mice only following the transfer of B-1 cells. Based on these data, we confirmed that B-1 cell differentiation into phagocytes also occurs in vivo. In conclusion, the results strongly suggest that B-1 cell derived phagocytes are a component of the LPS-elicited peritoneal macrophage population.  相似文献   

9.

Background

Previous studies report conflicting results on the benefit of peritoneal dialysis (PD) patients treated with low glucose degradation product (GDP) solution. The effects of low GDP solution on body fluid status and arterial pulse wave velocity (PWV) have not been studied.

Methods

We randomly assigned 68 incident PD patients to low GDP (Intervention Group) or conventional solutions (Control Group); 4 dropped off before they received the assigned treatment. Patients were followed for 52 weeks for changes in ultrafiltration, residual renal function, body fluid status and arterial PWV.

Result

After 52 weeks, Intervention Group had higher overhydration (3.1 ± 2.6 vs 1.9 ± 2.2 L, p = 0.045) and extracellular water volume (17.7 ± 3.9 vs 15.8 ± 3.1 L, p = 0.034) than Control Group. There was no significant difference in PWV between groups. There was no significant difference in residual renal function between the Groups. Intervention Group had lower ultrafiltration volume than Control Group at 4 weeks (0.45 ± .0.61 vs 0.90 ± 0.79 L/day, p = 0.013), but the difference became insignificant at later time points. Intervention Group had lower serum CRP levels than Control Group (4.17 ± 0.77 vs 4.91 ± 0.95 mg/dL, p < 0.0001).

Conclusion

Incident PD patients treated with low GDP solution have less severe systemic inflammation but trends of less ultrafiltration, and more fluid accumulation. However, the effects on ultrafiltration and fluid accumulation disappear with time. The long term effect of low GDP solution requires further study.

Trial Registration

ClinicalTrials.gov NCT00966615  相似文献   

10.
3′–nucleases/nucleotidases of the S1–P1 family (EC 3.1.30.1) are single–strand–specific or non-specific zinc–dependent phosphoesterases present in plants, fungi, protozoan parasites, and in some bacteria. They participate in a wide variety of biological processes and their current biotechnological applications rely on their single–strand preference, nucleotide non-specificity, a broad range of catalytic conditions and high stability. We summarize the present and potential utilization of these enzymes in biotechnology and medicine in the context of their biochemical and structure–function properties. Explanation of unanswered questions for bacterial and trypanosomatid representatives could facilitate development of emerging applications in medicine.  相似文献   

11.
12.
Antimicrobial peptides (AMPs) are important components of the innate immune system of animals, plants, fungi and bacteria and are recently under discussion as promising alternatives to conventional antibiotics. We have investigated two cecropin-like synthetic peptides, Gm1, which corresponds to the natural overall uncharged Galleria mellonella native peptide and ΔGm1, a modified overall positively charged Gm1 variant. We have analysed these peptides for their potential to inhibit the endotoxin-induced secretion of tumour necrosis factor-α (TNF-α) from human mononuclear cells. Furthermore, in a conventional microbiological assay, the ability of these peptides to inhibit the growth of the rough mutant bacteria Salmonella enterica Minnesota R60 and the polymyxin B-resistant Proteus mirabilis R45 was investigated and atomic force microscopy (AFM) measurements were performed to characterize the morphology of the bacteria treated by the two peptides. We have also studied their cytotoxic properties in a haemolysis assay to clarify potential toxic effects.Our data revealed for both peptides minor anti-inflammatory (anti-endotoxin) activity, but demonstrated antimicrobial activity with differences depending on the endotoxin composition of the respective bacteria. In accordance with the antimicrobial assay, AFM data revealed a stronger morphology change of the R45 bacteria than for the R60. Furthermore, Gm1 had a stronger effect on the bacteria than ΔGm1, leading to a different morphology regarding indentations and coalescing of bacterial structures. The findings verify the biophysical measurements with the peptides on model systems. Both peptides lack any haemolytic activity up to an amount of 100 μg/ml, making them suitable as new anti-infective agents.  相似文献   

13.
Rap1GAP is a GTPase-activating protein (GAP) that specifically stimulates the GTP hydrolysis of Rap1 GTPase. Although Rap1GAP is recognized as a tumor suppressor gene and downregulated in various cancers, little is known regarding the regulation of Rap1GAP ubiquitination and degradation under physiological conditions. Here, we demonstrated that Rap1GAP is ubiquitinated and degraded through proteasome pathway in mitosis. Proteolysis of Rap1GAP requires the PLK1 kinase and β-TrCP ubiquitin ligase complex. We revealed that PLK1 interacts with Rap1GAP in vivo through recognition of an SSP motif within Rap1GAP. PLK1 phosphorylates Ser525 in conserved 524DSGHVS529 degron of Rap1GAP and promotes its interaction with β-TrCP. We also showed that Rap1GAP was a cell cycle regulator and that tight regulation of the Rap1GAP degradation in mitosis is required for cell proliferation.  相似文献   

14.
15.
16.
17.
IL-1α and β are key players in the innate immune system. The secretion of these cytokines by dendritic cells (DC) is integral to the development of proinflammatory responses. These cytokines are not secreted via the classical secretory pathway. Instead, 2 independent processes are required; an initial signal to induce up-regulation of the precursor pro-IL-1α and -β, and a second signal to drive cleavage and consequent secretion. Pro-IL-1α and -β are both cytosolic and thus, are potentially subject to post-translational modifications. These modifications may, in turn, have a functional outcome in the context of IL-1α and -β secretion and hence inflammation. We report here that IL-1α and -β were degraded intracellularly in murine bone marrow-derived DC and that this degradation was dependent on active cellular processes. In addition, we demonstrate that degradation was ablated when the proteasome was inhibited, whereas autophagy did not appear to play a major role. Furthermore, inhibition of the proteasome led to an accumulation of polyubiquitinated IL-1α and -β, indicating that IL-1α and -β were polyubiquitinated prior to proteasomal degradation. Finally, our investigations suggest that polyubiquitination and proteasomal degradation are not continuous processes but instead are up-regulated following DC activation. Overall, these data highlight that IL-1α and -β polyubiquitination and proteasomal degradation are central mechanisms in the regulation of intracellular IL-1 levels in DC.  相似文献   

18.
Sphingosine-1-phosphate-induced α1B-adrenergic receptor desensitization and phosphorylation were studied in rat-1 fibroblasts stably expressing enhanced green fluorescent protein-tagged adrenoceptors. Sphingosine-1-phosphate induced adrenoceptor desensitization and phosphorylation through a signaling cascade that involved phosphoinositide 3-kinase and protein kinase C activities. The autocrine/paracrine role of sphingosine-1-phosphate was also studied. It was observed that activation of receptor tyrosine kinases, such as insulin growth factor-1 (IGF-I) and epidermal growth factor (EGF) receptors increased sphingosine kinase activity. Such activation and consequent production of sphingosine-1-phosphate appear to be functionally relevant in IGF-I- and EGF-induced α1B-adrenoceptor phosphorylation and desensitization as evidenced by the following facts: a) expression of a catalytically inactive (dominant-negative) mutant of sphingosine kinase 1 or b) S1P1 receptor knockdown markedly reduced this growth factor action. This action of sphingosine-1-phosphate involves EGF receptor transactivation. In addition, taking advantage of the presence of the eGFP tag in the receptor construction, we showed that S1P was capable of inducing α1B-adrenergic receptor internalization and that its autocrine/paracrine generation was relevant for internalization induced by IGF-I. Four distinct hormone receptors and two autocrine/paracrine mediators participate in IGF-I receptor-α1B-adrenergic receptor crosstalk.  相似文献   

19.
Gene–environment interactions have been extensively studied in lung cancer. It is likely that several genetic polymorphisms cooperate in increasing the individual risk. Therefore, the study of gene–gene interactions might be important to identify high-susceptibility subgroups. GSEC is an initiative aimed at collecting available data sets on metabolic polymorphisms and the risks of cancer at several sites and performing pooled analyses of the original data. Authors of published papers have provided original data sets. The present paper refers to gene–gene interactions in lung cancer and considers three polymorphisms in three metabolic genes: CYP1A1, GSTM1 and GSTT1. The present analyses compare the gene–gene interactions of the CYP1A1*2A, GSTM1 and GSTT1 polymorphisms from studies on lung cancer conducted in Europe and the USA between 1991 and 2000. Only Caucasians have been included. The data set includes 1466 cases and 1488 controls. The only clear-cut association was found with CYP1A1*2A. This association remained unchanged after stratification by polymorphisms in other genes (with an odds ratio [OR] of approximately 2.5), except when interaction with GSTM1 was considered. When the OR for CYP1A1*2A was stratified according to the GSTM1 genotype, the OR was increased only among the subjects who had the null (homozygous deletion) GSTM1 genotype (OR=2.8, 95% CI=0.9–8.4). The odds ratio for the interactive term (CYP1A1*2A by GSTM1) in logistic regression was 2.7 (95% CI=0.5–15.3). An association between lung cancer and the homozygous CYP1A1*2A genotype is confirmed. An apparent and biologically plausible interaction is suggested between this genotype and GSTM1.  相似文献   

20.
Polycystin signaling is likely to be regulated by phosphorylation. While a number of potential protein kinases and their target phosphorylation sites on polycystin-1 have been identified, the corresponding phosphatases have not been extensively studied. We have now determined that polycystin-1 is a regulatory subunit for protein phosphatase-1α (PP1α). Sequence analysis has revealed the presence of a highly conserved PP1-interaction motif in the cytosolic, C-terminal tail of polycystin-1; and we have shown that transfected PP1α specifically co-immunoprecipitates with a polycystin-1 C-tail construct. To determine whether PP1α dephosphorylates polycystin-1, a PKA-phosphorylated GST-polycystin-1 fusion protein was shown to be dephosphorylated by PP1α but not by PP2B (calcineurin). Mutations within the PP1-binding motif of polycystin-1, including an autosomal dominant polycystic kidney disease (ADPKD)-associated mutation, significantly reduced PP1α-mediated dephosphorylation of polycystin-1. The results suggest that polycystin-1 forms a holoenzyme complex with PP1α via a conserved PP1-binding motif within the polycystin-1 C-tail, and that PKA-phosphorylated polycystin-1 serves as a substrate for the holoenzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号