首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carbohydrate and lignin composition of feedstock materials are major factors in determining their bioenergy potential. This study was conducted to quantify dry biomass yield and the carbohydrate and lignin composition of six potential biofuel grasses (elephantgrass, energycane, sweetcane, giant reed, giant miscanthus, and sugarcane) across three sites in Florida for plant (2009) and first ratoon (2010) crops. Dry biomass yields ranged from about 30 to 50 Mg ha?1 and were generally greatest for elephantgrass, energycane, sweetcane, and sugarcane. Accordingly, total plant carbohydrate yields (20 to 25 Mg ha?1) were comparable among sugarcane, energycane, sweetcane, and elephantgrass, but were generally less for giant reed and even less for giant miscanthus. However, the contribution of total extractable carbohydrates and total fiber carbohydrates to total plant carbohydrate yields differed among species. Sugarcane had the highest concentrations of extractable carbohydrates (219 to 356 mg g?1), followed by energycane, then sweetcane, elephantgrass, and giant reed, with giant miscanthus having the lowest. Energycane and elephantgrass tended to have significantly more fiber glucose, and elephantgrass less xylose, than other species. Variability in total lignin concentrations on a fiber basis was relatively modest (250 to 285 mg g?1) across species, but was generally highest in sweetcane and giant reed. Overall, elephantgrass and energycane were prime regional candidates for cellulosic conversion using fermentation processes due to high yields and favorable fiber characteristics, although energycane tended to have higher extractable carbohydrates.  相似文献   

2.
Elephantgrass (Pennisetum purpureum Schum.) and energycane (Saccharum spp. hybrid) are high‐yielding C4 grasses that are attractive biofuel feedstocks in the humid subtropics. Determining appropriate harvest management practices for optimal feedstock chemical composition is an important precursor to their successful use in production systems. In this research, we have investigated the effects of harvest timing and frequency on biomass nutrient, carbohydrate and lignin composition of UF1 and cv. Merkeron elephantgrasses and cv. L 79‐1002 energycane. Biomass properties under increased harvest frequency (twice per year) and delayed harvest (once per year after frost) were compared with a control (once per year prior to frost). There were no differences between elephantgrass entries in structural carbohydrates; however, elephantgrasses had greater structural hexose concentration than energycane for single‐harvest treatments (avg. 398 vs. 366 mg g?1), a trait that is preferred for biofuel production. Delayed harvest of energycane decreased structural hexose compared with the control (374 vs. 357 mg g?1) because nonstructural components accumulated in energycane stem as harvest was delayed. Frequent defoliation (2X) increased N, P, and ash concentrations (75% for N and P and 58% for ash) in harvested biomass compared with single‐harvest treatments. We conclude that multiple harvests per year increase the harvest period during which feedstock is available for processing, but they do not result in optimal feedstock composition. In contrast, extending the period of feedstock supply by delaying a single harvest to after first freeze did not negatively affect cell wall constituent properties, while it increased length of the harvest period by ~30 days in the southeast USA.  相似文献   

3.
Conversion of large areas of agricultural grassland is inevitable if European and UK domestic production of biomass is to play a significant role in meeting demand. Understanding the impact of these land‐use changes on soil carbon cycling and stocks depends on accurate predictions from well‐parameterized models. Key considerations are cultivation disturbance and the effect of autotrophic root input stimulation on soil carbon decomposition under novel biomass crops. This study presents partitioned parameters from the conversion of semi‐improved grassland to Miscanthus bioenergy production and compares the contribution of autotrophic and heterotrophic respiration to overall ecosystem respiration of CO2 in the first and second years of establishment. Repeated measures of respiration from within and without root exclusion collars were used to produce time‐series model integrations separating live root inputs from decomposition of grass residues ploughed in with cultivation of the new crop. These parameters were then compared to total ecosystem respiration derived from eddy covariance sensors. Average soil surface respiration was 13.4% higher in the second growing season, increasing from 2.9 to 3.29 g CO2‐C m?2 day?1. Total ecosystem respiration followed a similar trend, increasing from 4.07 to 5.4 g CO2‐C m?2 day?1. Heterotrophic respiration from the root exclusion collars was 32.2% lower in the second growing season at 1.20 g CO2‐C m?2 day?1 compared to the previous year at 1.77 g CO2‐C m?2 day?1. Of the total respiration flux over the two‐year time period, aboveground autotrophic respiration plus litter decomposition contributed 38.46% to total ecosystem respiration while belowground autotrophic respiration and stimulation by live root inputs contributed 46.44% to soil surface respiration. This figure is notably higher than mean figures for nonforest soils derived from the literature and demonstrates the importance of crop‐specific parameterization of respiration models.  相似文献   

4.
A major limiting factor in the development of algae as a feedstock for the bioenergy industry is the consistent production and supply of biomass. This study is the first to access the suitability of the freshwater macroalgal genus Oedogonium to supply biomass for bioenergy applications. Specifically, we quantified the effect of CO2 supplementation on the rate of biomass production, carbon capture, and feedstock quality of Oedogonium when cultured in large‐scale outdoor tanks. Oedogonium cultures maintained at a pH of 7.5 through the addition of CO2 resulted in biomass productivities of 8.33 (±0.51) g DW m?2 day?1, which was 2.5 times higher than controls which had an average productivity of 3.37 (±0.75) g DW m?2 day?1. Under these productivities, Oedogonium had a carbon content of 41–45% and a higher heating value of 18.5 MJ kg?1, making it an ideal biomass energy feedstock. The rate of carbon fixation was 1380 g C m?2 yr?1 and 1073.1 g C m?2 yr?1 for cultures maintained at a pH of 7.5 and 8.5, and 481 g C m?2 yr?1 for cultures not supplemented with CO2. This study highlights the potential of integrating the large‐scale culture of freshwater macroalgae with existing carbon waste streams, for example coal‐fired power stations, both as a tool for carbon sequestration and as an enhanced and sustainable source of bioenergy.  相似文献   

5.
The goal of this study was to investigate whether chilling tolerance of C4 photosynthesis in Miscanthus can be transferred to sugarcane by hybridization. Net leaf CO2 uptake (Asat) and the maximum operating efficiency of photosystem II (ФPSII) were measured in warm conditions (25 °C/20 °C), and then during and following a chilling treatment of 10 °C/5 °C for 11 day in controlled environment chambers. Two of three hybrids (miscanes), ‘US 84‐1058’ and ‘US 87‐1019’, did not differ significantly from the chilling tolerant M. ×giganteus ‘Illinois’ (Mxg), for Asat, and ΦPSII measured during chilling. For Mxg grown at 10 °C/5 °C for 11 days, Asat was 4.4 μmol m?2 s?1, while for miscane ‘US 84‐1058’ and ‘US 87‐1019’, Asat was 5.7 and 3.5 μmol m?2 s?1, respectively. Miscanes ‘US 84‐1058’ and ‘US 87‐1019’ and Mxg had significantly higher rates of Asat during chilling than three tested sugarcanes. A third miscane showed lower rates than Mxg during chilling, but recovered to higher rates than sugarcane upon return to warm conditions. Chilling tolerance of ‘US 84‐1058’ was further confirmed under autumn field conditions in southern Illinois. The selected chilling tolerant miscanes have particular value for biomass feedstock and biofuel production and at the same time they can be a starting point for extending sugarcane's range to colder climates.  相似文献   

6.
Energy crops are currently promoted as potential sources of alternative energy that can help mitigate the climate change caused by greenhouse gases (GHGs). The perennial crop Miscanthus × giganteus is considered promising due to its high potential for biomass production under conditions of low input. However, to assess its potential for GHG mitigation, a better quantification of the crop's contribution to soil organic matter recycling under various management systems is needed. The aim of this work was to study the effect of abscised leaves on carbon (C) and nitrogen (N) recycling in a Miscanthus plantation. The dynamics of senescent leaf fall, the rate of leaf decomposition (using a litter bag approach) and the leaf accumulation at the soil surface were tracked over two 1‐year periods under field conditions in Northern France. The fallen leaves represented an average yearly input of 1.40 Mg C ha?1 and 16 kg N ha?1. The abscised leaves lost approximately 54% of their initial mass in 1 year due to decomposition; the remaining mass, accumulated as a mulch layer at the soil surface, was equivalent to 7 Mg dry matter (DM) ha?1 5 years after planting. Based on the estimated annual leaf‐C recycling rate and a stabilization rate of 35% of the added C, the annual contribution of the senescent leaves to the soil C was estimated to be approximately 0.50 Mg C ha?1yr?1 or 10 Mg C ha?1 total over the 20‐year lifespan of a Miscanthus crop. This finding suggested that for Miscanthus, the abscised leaves contribute more to the soil C accumulation than do the rhizomes or roots. In contrast, the recycling of the leaf N to the soil was less than for the other N fluxes, particularly for those involving the transfer of N from the tops of the plant to the rhizome.  相似文献   

7.
Studies have shown a strong linkage between zooplankton and fisheries' potential in tropical lakes. High zooplankton production provides the basis for fish production, but knowledge of zooplankton production dynamics in African lakes is extremely limited. Crustacean zooplankton production and the biomass of dominant rotifers in Lake Bosumtwi were assessed over a 2‐year period. The crustaceans comprised an endemic and extremely abundant cyclopoid copepod, Mesocyclops bosumtwii and the cladoceran Moina micrura. Mean standing stock of the crustaceans was 429 mg dw m?3, whilst annual production averaged 2.1 g dw m?3 y?1. Production doubled from 1.4 g dw m?3 y?1 in 2005 to 2.8 g dw m?3 y?1 in 2006. Copepods accounted for 98.5% of crustacean production. The biomass of the dominant rotifers Brachionus calyciflorus and Hexarthra intermedia was less than 1% of total zooplankton biomass. Daily turnover rate and turnover time of the crustaceans was 0.19 day?1 and 6.2 days respectively. Crustacean production yielded no statistical relationship with phytoplankton biomass. Production was well within the range of tropical lakes. Peak crustacean production synchronized maximum rainfall, lake mixing and phytoplankton production. Most importantly, no one year's set of dynamics can be used to characterize zooplankton production in the lake.  相似文献   

8.
Woody biomass produced from short rotation coppice (SRC) poplar (Populus spp.) and willow (Salix spp.) is a bioenergy feedstock that can be grown widely across temperate landscapes and its use is likely to increase in future. Process‐based models are therefore required to predict current and future yield potential that are spatially resolved and can consider new genotypes and climates that will influence future yield. The development of a process‐based model for SRC poplar and willow, ForestGrowth‐SRC, is described and the ability of the model to predict SRC yield and water use efficiency (WUE) was evaluated. ForestGrowth‐SRC was parameterized from a process‐based model, ForestGrowth for high forest. The new model predicted annual above ground yield well for poplar (r2 = 0.91, RMSE = 1.46 ODT ha?1 yr?1) and willow (r2 = 0.85, RMSE = 1.53 ODT ha?1 yr?1), when compared with measured data from seven sites in contrasting climatic zones across the United Kingdom. Average modelled yields for poplar and willow were 10.3 and 9.0 ODT ha?1 yr?1, respectively, and interestingly, the model predicted a higher WUE for poplar than for willow: 9.5 and 5.5 g kg?1 respectively. Using regional mapped climate and soil inputs, modelled and measured yields for willow compared well (r2 = 0.58, RMSE = 1.27 ODT ha?1 yr?1), providing the first UK map of SRC yield, from a process‐based model. We suggest that the model can be used for predicting current and future SRC yields at a regional scale, highlighting important species and genotype choices with respect to water use efficiency and yield potential.  相似文献   

9.
A recent alternative strategy to reduce environmental problems associated with P transport from agricultural soils is the use of bioenergy crops to remediate excess soil P. In addition to the positive impacts associated with P mitigation, harvested biomass used as a renewable energy source can also offset the cost associated with plant-based P remediation strategies. The objective of this study was to identify potential crop species that can be used for remediation of soil P and as a cellulosic feedstock for production of renewable energy in South Florida. Fifteen crop entries were investigated for their potential to remove P from a P-enriched soil. Dry matter (DM) yield varied among crop species with greatest yield observed for elephantgrass (Pennisetum purpureum Schum.) and sugarcane (Saccharum spp.) (43 and 39 Mg?ha?1 year?1, respectively). Similarly, greater P removal rates were observed for elephantgrass (up to 126 kg?P?ha?1 year?1 in 2008) followed by sugarcane (62 kg?P?ha?1 year?1 in 2008). Although there was no effect (P?=?0.45) of crop species on P reduction in the soil, soil P concentrations decreased linearly during the 3-year study. Because of its relatively greater DM yield and P removal rates, elephantgrass was shown to be a good candidate for remediation of excess soil P in South Florida Spodosols.  相似文献   

10.
11.
Sweetcane (Erianthus arundinaceus [Retzius] Jeswiet) is an ecologically dominant warm‐season perennial grass native to southern China. It traditionally plays an important role in sugarcane breeding due to its excellent biological traits and genetic relatedness to sugarcane. Recent studies have shown that sweetcane has a great potential in bioenergy and environmental remediation. The objective of this paper is to review the current research on sweetcane biology, phenology, biogeography, agronomy, and conversion technology, in order to explore its development as a bioenergy crop with environmental remediation potential. Sweetcane is resistant to a variety of stressors and can adapt to different growth environments. It can be used for ecological restoration, soil and water conservation, contaminated land repairing, nonpoint source pollutants barriers in buffer strips along surface waters, and as an ornamental and remediation plant on roadsides and in wetlands. Sweetcane exhibits higher biomass yield, calorific value and cellulose content than other bioenergy crops under the same growth conditions, thereby indicating its superior potential in second‐generation biofuel production. However, research on sweetcane as a bioenergy plant is still in its infancy. More works need be conducted on breeding, cultivation, genetic transformation, and energy conversion technologies.  相似文献   

12.
A field trial was carried out on a 15 year old Miscanthus stand, subject to nitrogen fertilizer treatments of 0, 63 and 125 kg‐N ha?1, measuring N2O emissions, as well as annual crop yield over a full year. N2O emission intensity (N2O emissions calculated as a function of above‐ground biomass) was significantly affected by fertilizer application, with values of 52.2 and 59.4 g N2O‐N t?1 observed at 63 and 125 kg‐N ha?1, respectively, compared to 31.3 g N2O‐N t?1 in the zero fertilizer control. A life cycle analyses approach was applied to calculate the increase in yield required to offset N2O emissions from Miscanthus through fossil fuel substitution in the fuel chain. For the conditions observed during the field trial yield increases of 0.33 and 0.39 t ha?1 were found to be required to offset N2O emissions from the 63 kg‐N ha?1 treatment, when replacing peat and coal, respectively, while increases of 0.71 and 0.83 t ha?1 were required for the 125 kg‐N ha?1 treatment, for each fuel. These values are considerably less than the mean above‐ground biomass yield increases observed here of 1.57 and 2.79 t ha?1 at fertilization rates 63 and 125 kg‐N ha?1 respectively. Extending this analysis to include a range of fertilizer application rates and N2O emission factors found increases in yield necessary to offset soil N2O emissions ranging from 0.26 to 2.54 t ha?1. These relatively low yield increase requirements indicate that where nitrogen fertilizer application improves yield, the benefits of such a response will not be offset by soil N2O emissions.  相似文献   

13.
Clonal propagation is important for the survival and maintenance of the common reed Phragmites australis. Pot culture experiments were conducted to investigate the effects of lead (Pb) concentration (0, 500, 1500, 3000, 4500 mg·kg?1) and water stress on the clonal reproductive ability of this species. The Pb concentration found in plant organs, in decreasing order, was roots >shoots >rhizomes. There was a negative relationship between the growth of clonal propagative modules (excluding axillary shoot buds) and Pb concentrations, which caused a decrease in biomass, rhizome growth and number of axillary and apical rhizome buds. Daughter axillary shoots exhibited a tolerance strategy, with no significant change in their number; the axillary and apical rhizome buds, daughter apical rhizome shoots and rhizomes exhibited compensatory growth during the late stage of Pb (excluding 4500 mg·kg?1) treatment in a wet environment. Pb applications above 500 mg·kg?1 reduced these parameters significantly in the drought treatment, except for the number of axillary shoot buds, which did not change. Our results indicate that clonal propagative resistance to Pb contamination can occur via tolerance strategies, compensatory growth and a Pb allocation strategy, enabling these reeds to maintain population stability in wet environments. However, clonal modular growth and reproductive ability were inhibited significantly by the interaction between drought and Pb, which would cause a decline in P. australis populations in a dry environment. Lead concentrations of 4500 and 500 mg·kg?1 in soils might meet or exceed the Pb tolerance threshold of clonally propagated reeds in wet and dry environments, respectively.  相似文献   

14.
Is the typical zinc (Zn) content of honey and pollen sufficient to meet the nutritional requirements of honey bees? To answer this question, and find the optimal dietary Zn levels for honey bees, we investigated the effects of varying dietary Zn levels on both captive worker bees and free‐flying honey bees, Apis mellifera ligustica Spinola (Hymenoptera: Apidae). We fed captive workers and free‐flying honey bees with 50% (wt/wt) sucrose solutions with Zn levels of either 0, 15, 30, 45, 60, or 75 mg kg?1 diet and measured their Cu/Zn‐SOD activity, the mean survival time of captive bees, the Cu/Zn‐SOD activity of larvae, and the Zn concentration of royal jelly. Captive workers provided with 30 mg kg?1 dietary Zn had higher Cu/Zn‐SOD activity and mean survival time than the control. Dietary Zn levels from 60 to 75 mg kg?1 significantly increased the Zn content of royal jelly provided by colonies and the Cu/Zn‐SOD activity of larvae. Honey or pollen with a Zn content of <30 mg kg?1 was insufficient to satisfy the maintenance nutritional requirements of bees that were not raising larvae. It therefore seems advisable to supply supplementary Zn to non‐brooding colonies when the Zn content of honey or pollen is <30 mg kg?1. Honey or pollen with a Zn content of 60 mg kg?1 was sufficient to satisfy the nutritional requirements for royal jelly production and to improve the health of larvae. It may therefore also be advisable to provide supplementary Zn to colonies with larvae when the Zn content of honey or pollen is <60 mg kg?1.  相似文献   

15.
For field application of a bacterial strain used to control Phythophthora capsici, we will need a biologically and economically efficient carrier medium. The known antagonist Paenibacillus ehimensisKWN38 was grown in a grass medium where it showed high antifungal and lytic enzyme activities. To demonstrate the potential of P. ehimensisKWN38 for biocontrol of late blight disease in pepper, pot trials were conducted by treating the 1‐month‐old plants with water (W), a selected grass medium (G3), G plus P. ehimensisKWN38 inoculation (G3P) or synthetic fungicide (F). The shoot dry weight in G3P was higher than that in W and F treatments at 15 days after zoospore infection (DZI). The root dry weight in G3P was also higher than that in W. The root mortality of G3 and W increased over 58 and 80% at 15 DZI, and some plants in those treatments wilted due to the failure of root physiology. The plants in G3P and F survived well because of their better root health conditions. Soil cellulase activity of G3P was consistently higher than that of W and F at earlier observation times (0, 2 and 6 DZI). The root β‐1,3‐glucanase activity of G3P promptly increased to maximum shortly after zoospore infection and reached the maximum value of 51.12 unit g?1 of fresh weight at 2 DZI. All these results indicate that inoculation of P. ehimensisKWN38 to the root zone of potted pepper plants increases plant growth, root and soil enzyme activities and alleviates the root death caused by infection with P. capsici zoospores.  相似文献   

16.
Agave species are high‐yielding crassulacean acid metabolism (CAM) plants, some of which are grown commercially and recognized as potential bioenergy species for dry regions of the world. This study is the first field trial of Agave species for bioenergy in the United States, and was established to compare the production of Agave americana with the production of Agave tequilana and Agave fourcroydes, which are produced commercially in Mexico for tequila and fiber. The field trial included four experimental irrigation levels to test the response of biomass production to water inputs. After 3 years, annual production of healthy A. americana plants reached 9.3 Mg dry mass ha?1 yr?1 (including pup mass) with 530 mm of annual water inputs, including both rainfall and irrigation. Yields in the most arid conditions tested (300 mm yr?1 water input) were 2.0–4.0 Mg dry mass ha?1 yr?1. Agave tequilana and Agave fourcroydes were severely damaged by cold in the first winter, and produced maximum yields of only 0.04 Mg ha?1 yr?1 and 0.26 Mg ha?1 yr?1, respectively. The agave snout weevil (Scyphophorus acupunctatus) emerged as an important challenge for A. americana cropping, killing a greater number of plants in the higher irrigation treatments. Physiological differences in A. americana plants across irrigation treatments were most evident in the warmest season, with gas exchange beginning up to 3 h earlier and water use efficiency declining in treatments with the greatest water input (780 mm yr?1 water input). Yields were lower than previous projections for Agave species, but results from this study suggest that A. americana has potential as a bioenergy crop and would have substantially reduced irrigation requirements relative to conventional crops in the southwestern USA. Challenges for pest management and harvesting must still be addressed before an efficient production system that uses Agave can be realized.  相似文献   

17.
The perennial grass triploid Miscanthus × giganteus is a promising renewable bioenergy feedstock in the United States and Europe. Originating from eastern Asia, this species is a sterile hybrid cross between M. sinensis and M. sacchariflorus. While research has begun to examine the impacts of M. sinensis and triploid M. × giganteus on the landscape, M. sacchariflorus has been largely overlooked in the peer‐reviewed literature. This review article discusses the origin, uses, distribution, and invasive potential of M. sacchariflorus. M. sacchariflorus is capable of producing high yields (10.7 t DM ha?1 yr?1), generally does not reproduce by seed, and can be challenging to establish due to poor cold tolerance, likely due to the limited germplasm used in evaluations. However, M. sacchariflorus has abundant and aggressively spreading rhizomes, which underscores its invasive risk. In the United States, it is listed as escaped from cultivation in at least eight states, primarily in the Midwest, although it is likely that not all populations have been reported. As such, it is essential to generate a comprehensive dataset of all known M. sacchariflorus populations and monitor any continued spread of this species.  相似文献   

18.
We present a generic spatially explicit modeling framework to estimate carbon emissions from deforestation (INPE‐EM). The framework incorporates the temporal dynamics related to the deforestation process and accounts for the biophysical and socioeconomic heterogeneity of the region under study. We build an emission model for the Brazilian Amazon combining annual maps of new clearings, four maps of biomass, and a set of alternative parameters based on the recent literature. The most important results are as follows: (a) Using different biomass maps leads to large differences in estimates of emission; for the entire region of the Brazilian Amazon in the last decade, emission estimates of primary forest deforestation range from 0.21 to 0.26 Pg C yr?1. (b) Secondary vegetation growth presents a small impact on emission balance because of the short duration of secondary vegetation. In average, the balance is only 5% smaller than the primary forest deforestation emissions. (c) Deforestation rates decreased significantly in the Brazilian Amazon in recent years, from 27 Mkm2 in 2004 to 7 Mkm2 in 2010. INPE‐EM process‐based estimates reflect this decrease even though the agricultural frontier is moving to areas of higher biomass. The decrease is slower than a non‐process instantaneous model would estimate as it considers residual emissions (slash, wood products, and secondary vegetation). The average balance, considering all biomass, decreases from 0.28 in 2004 to 0.15 Pg C yr?1 in 2009; the non‐process model estimates a decrease from 0.33 to 0.10 Pg C yr?1. We conclude that the INPE‐EM is a powerful tool for representing deforestation‐driven carbon emissions. Biomass estimates are still the largest source of uncertainty in the effective use of this type of model for informing mechanisms such as REDD+. The results also indicate that efforts to reduce emissions should focus not only on controlling primary forest deforestation but also on creating incentives for the restoration of secondary forests.  相似文献   

19.
Planting the perennial biomass crop Miscanthus in the UK could offset 2–13 Mt oil eq. yr?1, contributing up to 10% of current energy use. Policymakers need assurance that upscaling Miscanthus production can be performed sustainably without negatively impacting essential food production or the wider environment. This study reviews a large body of Miscanthus relevant literature into concise summary statements. Perennial Miscanthus has energy output/input ratios 10 times higher (47.3 ± 2.2) than annual crops used for energy (4.7 ± 0.2 to 5.5 ± 0.2), and the total carbon cost of energy production (1.12 g CO2‐C eq. MJ?1) is 20–30 times lower than fossil fuels. Planting on former arable land generally increases soil organic carbon (SOC) with Miscanthus sequestering 0.7–2.2 Mg C4‐C ha?1 yr?1. Cultivation on grassland can cause a disturbance loss of SOC which is likely to be recovered during the lifetime of the crop and is potentially mitigated by fossil fuel offset. N2O emissions can be five times lower under unfertilized Miscanthus than annual crops and up to 100 times lower than intensive pasture. Nitrogen fertilizer is generally unnecessary except in low fertility soils. Herbicide is essential during the establishment years after which natural weed suppression by shading is sufficient. Pesticides are unnecessary. Water‐use efficiency is high (e.g. 5.5–9.2 g aerial DM (kg H2O)?1, but high biomass productivity means increased water demand compared to cereal crops. The perennial nature and belowground biomass improves soil structure, increases water‐holding capacity (up by 100–150 mm), and reduces run‐off and erosion. Overwinter ripening increases landscape structural resources for wildlife. Reduced management intensity promotes earthworm diversity and abundance although poor litter palatability may reduce individual biomass. Chemical leaching into field boundaries is lower than comparable agriculture, improving soil and water habitat quality.  相似文献   

20.
Understanding tolerance of thermal extremes by pest insects is essential for developing integrated management strategies, as tolerance traits can provide insights into constraints on activity and survival. A major question in thermal biology is whether thermal limits vary systematically with microclimate variation, or whether other biotic or abiotic factors can influence these limits in a predictable manner. Here, we report the results of experiments determining thermal limits to activity and survival at extreme temperatures in the stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae), collected from either Saccharum spp. hybrids (sugarcane) (Poaceae) or Cyperus papyrus L. (Cyperaceae) and then reared under standard conditions in the laboratory for 1–2 generations. Chill‐coma temperature (CTmin), critical thermal maximum (CTmax), lower lethal temperatures (LLT), and freezing temperature between E. saccharina collected from the two host plants were compared. CTmin and CTmax of E. saccharina moths collected from sugarcane were significantly lower than those from C. papyrus (CTmin = 2.8 ± 0.4 vs. 3.9 ± 0.4 °C; CTmax = 44.6 ± 0.1 vs. 44.9 ± 0.2 °C). By contrast, LLT of moths and freezing temperatures of pupae did not vary with host plant [LLT for 50% (LT50) of the moth population, when collected from sugarcane: ?3.2 ± 0.5 °C, from C. papyrus: ?3.9 ± 0.8 °C]. Freezing temperatures of pupae collected from C. papyrus were ?18.0 ± 1.0 °C and of those from sugarcane ?17.5 ± 1.8 °C. The E. saccharina which experienced the lowest minimum temperature (in C. papyrus) did not have the lowest CTmin, although the highest estimate of CTmax was found in E. saccharina collected from C. papyrus and this was also the microsite which reported the highest maximum temperatures. These results therefore suggest that host plant may strongly mediate lower critical thermal limits, but not necessarily LLT or freezing temperatures. These results have significant implications for ongoing pest management and thermal biology of these and other insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号