首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs) are responsible for their emergence. Comparing two different models of network topology—random networks of Erdős-Rényi type and networks with highly interconnected hubs—we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations.  相似文献   

2.
Simulation of biomolecular networks is now indispensable for studying biological systems, from small reaction networks to large ensembles of cells. Here we present a novel approach for stochastic simulation of networks embedded in the dynamic environment of the cell and its surroundings. We thus sample trajectories of the stochastic process described by the chemical master equation with time-varying propensities. A comparative analysis shows that existing approaches can either fail dramatically, or else can impose impractical computational burdens due to numerical integration of reaction propensities, especially when cell ensembles are studied. Here we introduce the Extrande method which, given a simulated time course of dynamic network inputs, provides a conditionally exact and several orders-of-magnitude faster simulation solution. The new approach makes it feasible to demonstrate—using decision-making by a large population of quorum sensing bacteria—that robustness to fluctuations from upstream signaling places strong constraints on the design of networks determining cell fate. Our approach has the potential to significantly advance both understanding of molecular systems biology and design of synthetic circuits.  相似文献   

3.
The (asymptotic) degree distributions of the best-known “scale-free” network models are all similar and are independent of the seed graph used; hence, it has been tempting to assume that networks generated by these models are generally similar. In this paper, we observe that several key topological features of such networks depend heavily on the specific model and the seed graph used. Furthermore, we show that starting with the “right” seed graph (typically a dense subgraph of the protein–protein interaction network analyzed), the duplication model captures many topological features of publicly available protein–protein interaction networks very well.  相似文献   

4.
Compartmentalization—the organization of ecological interaction networks into subsets of species that do not interact with other subsets (true compartments) or interact more frequently among themselves than with other species (modules)—has been identified as a key property for the functioning, stability and evolution of ecological communities. Invasions by entomophilous invasive plants may profoundly alter the way interaction networks are compartmentalized. We analysed a comprehensive dataset of 40 paired plant–pollinator networks (invaded versus uninvaded) to test this hypothesis. We show that invasive plants have higher generalization levels with respect to their pollinators than natives. The consequences for network topology are that—rather than displacing native species from the network—plant invaders attracting pollinators into invaded modules tend to play new important topological roles (i.e. network hubs, module hubs and connectors) and cause role shifts in native species, creating larger modules that are more connected among each other. While the number of true compartments was lower in invaded compared with uninvaded networks, the effect of invasion on modularity was contingent on the study system. Interestingly, the generalization level of the invasive plants partially explains this pattern, with more generalized invaders contributing to a lower modularity. Our findings indicate that the altered interaction structure of invaded networks makes them more robust against simulated random secondary species extinctions, but more vulnerable when the typically highly connected invasive plants go extinct first. The consequences and pathways by which biological invasions alter the interaction structure of plant–pollinator communities highlighted in this study may have important dynamical and functional implications, for example, by influencing multi-species reciprocal selection regimes and coevolutionary processes.  相似文献   

5.
Schizophrenia is a psychiatric disorder that has eluded characterization in terms of local abnormalities of brain activity, and is hypothesized to affect the collective, “emergent” working of the brain. Indeed, several recent publications have demonstrated that functional networks in the schizophrenic brain display disrupted topological properties. However, is it possible to explain such abnormalities just by alteration of local activation patterns? This work suggests a negative answer to this question, demonstrating that significant disruption of the topological and spatial structure of functional MRI networks in schizophrenia (a) cannot be explained by a disruption to area-based task-dependent responses, i.e. indeed relates to the emergent properties, (b) is global in nature, affecting most dramatically long-distance correlations, and (c) can be leveraged to achieve high classification accuracy (93%) when discriminating between schizophrenic vs control subjects based just on a single fMRI experiment using a simple auditory task. While the prior work on schizophrenia networks has been primarily focused on discovering statistically significant differences in network properties, this work extends the prior art by exploring the generalization (prediction) ability of network models for schizophrenia, which is not necessarily captured by such significance tests.  相似文献   

6.
It has been a long-standing goal in systems biology to find relations between the topological properties and functional features of protein networks. However, most of the focus in network studies has been on highly connected proteins (“hubs”). As a complementary notion, it is possible to define bottlenecks as proteins with a high betweenness centrality (i.e., network nodes that have many “shortest paths” going through them, analogous to major bridges and tunnels on a highway map). Bottlenecks are, in fact, key connector proteins with surprising functional and dynamic properties. In particular, they are more likely to be essential proteins. In fact, in regulatory and other directed networks, betweenness (i.e., “bottleneck-ness”) is a much more significant indicator of essentiality than degree (i.e., “hub-ness”). Furthermore, bottlenecks correspond to the dynamic components of the interaction network—they are significantly less well coexpressed with their neighbors than nonbottlenecks, implying that expression dynamics is wired into the network topology.  相似文献   

7.
8.
Proteins interact in complex protein–protein interaction (PPI) networks whose topological properties—such as scale-free topology, hierarchical modularity, and dissortativity—have suggested models of network evolution. Currently preferred models invoke preferential attachment or gene duplication and divergence to produce networks whose topology matches that observed for real PPIs, thus supporting these as likely models for network evolution. Here, we show that the interaction density and homodimeric frequency are highly protein age–dependent in real PPI networks in a manner which does not agree with these canonical models. In light of these results, we propose an alternative stochastic model, which adds each protein sequentially to a growing network in a manner analogous to protein crystal growth (CG) in solution. The key ideas are (1) interaction probability increases with availability of unoccupied interaction surface, thus following an anti-preferential attachment rule, (2) as a network grows, highly connected sub-networks emerge into protein modules or complexes, and (3) once a new protein is committed to a module, further connections tend to be localized within that module. The CG model produces PPI networks consistent in both topology and age distributions with real PPI networks and is well supported by the spatial arrangement of protein complexes of known 3-D structure, suggesting a plausible physical mechanism for network evolution.  相似文献   

9.
Collective, coordinated cellular motions underpin key processes in all multicellular organisms, yet it has been difficult to simultaneously express the ‘rules’ behind these motions in clear, interpretable forms that effectively capture high-dimensional cell-cell interaction dynamics in a manner that is intuitive to the researcher. Here we apply deep attention networks to analyze several canonical living tissues systems and present the underlying collective migration rules for each tissue type using only cell migration trajectory data. We use these networks to learn the behaviors of key tissue types with distinct collective behaviors—epithelial, endothelial, and metastatic breast cancer cells—and show how the results complement traditional biophysical approaches. In particular, we present attention maps indicating the relative influence of neighboring cells to the learned turning decisions of a ‘focal cell’–the primary cell of interest in a collective setting. Colloquially, we refer to this learned relative influence as ‘attention’, as it serves as a proxy for the physical parameters modifying the focal cell’s future motion as a function of each neighbor cell. These attention networks reveal distinct patterns of influence and attention unique to each model tissue. Endothelial cells exhibit tightly focused attention on their immediate forward-most neighbors, while cells in more expansile epithelial tissues are more broadly influenced by neighbors in a relatively large forward sector. Attention maps of ensembles of more mesenchymal, metastatic cells reveal completely symmetric attention patterns, indicating the lack of any particular coordination or direction of interest. Moreover, we show how attention networks are capable of detecting and learning how these rules change based on biophysical context, such as location within the tissue and cellular crowding. That these results require only cellular trajectories and no modeling assumptions highlights the potential of attention networks for providing further biological insights into complex cellular systems.  相似文献   

10.
Hierarchical organization—the recursive composition of sub-modules—is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force–the cost of connections–promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics.  相似文献   

11.
12.
We investigate the efficient transmission and processing of weak, subthreshold signals in a realistic neural medium in the presence of different levels of the underlying noise. Assuming Hebbian weights for maximal synaptic conductances—that naturally balances the network with excitatory and inhibitory synapses—and considering short-term synaptic plasticity affecting such conductances, we found different dynamic phases in the system. This includes a memory phase where population of neurons remain synchronized, an oscillatory phase where transitions between different synchronized populations of neurons appears and an asynchronous or noisy phase. When a weak stimulus input is applied to each neuron, increasing the level of noise in the medium we found an efficient transmission of such stimuli around the transition and critical points separating different phases for well-defined different levels of stochasticity in the system. We proved that this intriguing phenomenon is quite robust, as it occurs in different situations including several types of synaptic plasticity, different type and number of stored patterns and diverse network topologies, namely, diluted networks and complex topologies such as scale-free and small-world networks. We conclude that the robustness of the phenomenon in different realistic scenarios, including spiking neurons, short-term synaptic plasticity and complex networks topologies, make very likely that it could also occur in actual neural systems as recent psycho-physical experiments suggest.  相似文献   

13.
The brain''s structural and functional systems, protein-protein interaction, and gene networks are examples of biological systems that share some features of complex networks, such as highly connected nodes, modularity, and small-world topology. Recent studies indicate that some pathologies present topological network alterations relative to norms seen in the general population. Therefore, methods to discriminate the processes that generate the different classes of networks (e.g., normal and disease) might be crucial for the diagnosis, prognosis, and treatment of the disease. It is known that several topological properties of a network (graph) can be described by the distribution of the spectrum of its adjacency matrix. Moreover, large networks generated by the same random process have the same spectrum distribution, allowing us to use it as a “fingerprint”. Based on this relationship, we introduce and propose the entropy of a graph spectrum to measure the “uncertainty” of a random graph and the Kullback-Leibler and Jensen-Shannon divergences between graph spectra to compare networks. We also introduce general methods for model selection and network model parameter estimation, as well as a statistical procedure to test the nullity of divergence between two classes of complex networks. Finally, we demonstrate the usefulness of the proposed methods by applying them to (1) protein-protein interaction networks of different species and (2) on networks derived from children diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) and typically developing children. We conclude that scale-free networks best describe all the protein-protein interactions. Also, we show that our proposed measures succeeded in the identification of topological changes in the network while other commonly used measures (number of edges, clustering coefficient, average path length) failed.  相似文献   

14.
Recent advances indicate that assigning or reversing edge direction can significantly improve the structural controllability of complex networks. For directed networks, approaching the optimal structural controllability can be achieved by detecting and reversing certain “inappropriate” edge directions. However, the existence of multiple sets of “inappropriate” edge directions suggests that different edges have different effects on optimal controllability—that is, different combinations of edges can be reversed to achieve the same structural controllability. Therefore, we classify edges into three categories based on their direction: critical, redundant and intermittent. We then investigate the effects of changing these edge directions on network controllability, and demonstrate that the existence of more critical edge directions implies not only a lower cost of modifying inappropriate edges but also better controllability. Motivated by this finding, we present a simple edge orientation method aimed at producing more critical edge directions—utilizing only local information—which achieves near optimal controllability. Furthermore, we explore the effects of edge direction on the controllability of several real networks.  相似文献   

15.
Information processing can leave distinct footprints on the statistics of neural spiking. For example, efficient coding minimizes the statistical dependencies on the spiking history, while temporal integration of information may require the maintenance of information over different timescales. To investigate these footprints, we developed a novel approach to quantify history dependence within the spiking of a single neuron, using the mutual information between the entire past and current spiking. This measure captures how much past information is necessary to predict current spiking. In contrast, classical time-lagged measures of temporal dependence like the autocorrelation capture how long—potentially redundant—past information can still be read out. Strikingly, we find for model neurons that our method disentangles the strength and timescale of history dependence, whereas the two are mixed in classical approaches. When applying the method to experimental data, which are necessarily of limited size, a reliable estimation of mutual information is only possible for a coarse temporal binning of past spiking, a so-called past embedding. To still account for the vastly different spiking statistics and potentially long history dependence of living neurons, we developed an embedding-optimization approach that does not only vary the number and size, but also an exponential stretching of past bins. For extra-cellular spike recordings, we found that the strength and timescale of history dependence indeed can vary independently across experimental preparations. While hippocampus indicated strong and long history dependence, in visual cortex it was weak and short, while in vitro the history dependence was strong but short. This work enables an information-theoretic characterization of history dependence in recorded spike trains, which captures a footprint of information processing that is beyond time-lagged measures of temporal dependence. To facilitate the application of the method, we provide practical guidelines and a toolbox.  相似文献   

16.
17.
We deal here with the issue of complex network evolution. The analysis of topological evolution of complex networks plays a crucial role in predicting their future. While an impressive amount of work has been done on the issue, very little attention has been so far devoted to the investigation of how information theory quantifiers can be applied to characterize networks evolution. With the objective of dynamically capture the topological changes of a network''s evolution, we propose a model able to quantify and reproduce several characteristics of a given network, by using the square root of the Jensen-Shannon divergence in combination with the mean degree and the clustering coefficient. To support our hypothesis, we test the model by copying the evolution of well-known models and real systems. The results show that the methodology was able to mimic the test-networks. By using this copycat model, the user is able to analyze the networks behavior over time, and also to conjecture about the main drivers of its evolution, also providing a framework to predict its evolution.  相似文献   

18.
Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known in general about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar graph metrics, but presented here in a more complete statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus specifically on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling—in addition to several summary statistics, including the mean clustering coefficient, the shortest path-length, and the network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be physically embedded in anatomical brain regions tend to produce distributions that are most similar to the corresponding measurements for the brain. We also find that network models hardcoded to display one network property (e.g., assortativity) do not in general simultaneously display a second (e.g., hierarchy). This relative independence of network properties suggests that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful starting point for the statistical inference of brain network structure from neuroimaging data.  相似文献   

19.
System identification techniques—projection pursuit regression models (PPRs) and convolutional neural networks (CNNs)—provide state-of-the-art performance in predicting visual cortical neurons’ responses to arbitrary input stimuli. However, the constituent kernels recovered by these methods are often noisy and lack coherent structure, making it difficult to understand the underlying component features of a neuron’s receptive field. In this paper, we show that using a dictionary of diverse kernels with complex shapes learned from natural scenes based on efficient coding theory, as the front-end for PPRs and CNNs can improve their performance in neuronal response prediction as well as algorithmic data efficiency and convergence speed. Extensive experimental results also indicate that these sparse-code kernels provide important information on the component features of a neuron’s receptive field. In addition, we find that models with the complex-shaped sparse code front-end are significantly better than models with a standard orientation-selective Gabor filter front-end for modeling V1 neurons that have been found to exhibit complex pattern selectivity. We show that the relative performance difference due to these two front-ends can be used to produce a sensitive metric for detecting complex selectivity in V1 neurons.  相似文献   

20.

Background

Recent computational techniques have facilitated analyzing genome-wide protein-protein interaction data for several model organisms. Various graph-clustering algorithms have been applied to protein interaction networks on the genomic scale for predicting the entire set of potential protein complexes. In particular, the density-based clustering algorithms which are able to generate overlapping clusters, i.e. the clusters sharing a set of nodes, are well-suited to protein complex detection because each protein could be a member of multiple complexes. However, their accuracy is still limited because of complex overlap patterns of their output clusters.

Results

We present a systematic approach of refining the overlapping clusters identified from protein interaction networks. We have designed novel metrics to assess cluster overlaps: overlap coverage and overlapping consistency. We then propose an overlap refinement algorithm. It takes as input the clusters produced by existing density-based graph-clustering methods and generates a set of refined clusters by parameterizing the metrics. To evaluate protein complex prediction accuracy, we used the f-measure by comparing each refined cluster to known protein complexes. The experimental results with the yeast protein-protein interaction data sets from BioGRID and DIP demonstrate that accuracy on protein complex prediction has increased significantly after refining cluster overlaps.

Conclusions

The effectiveness of the proposed cluster overlap refinement approach for protein complex detection has been validated in this study. Analyzing overlaps of the clusters from protein interaction networks is a crucial task for understanding of functional roles of proteins and topological characteristics of the functional systems.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号