共查询到20条相似文献,搜索用时 0 毫秒
1.
Despite over 20 years of research and scientific consensus on the topic, climate change continues to be a politically polarizing issue. We conducted a survey experiment to test whether providing the public with information on the exact extent of scientific agreement about the occurrence and causes of climate change affects respondents’ own beliefs and bridges the divide between conservatives and liberals. First, we show that the public significantly underestimated the extent of the scientific consensus. We then find that those given concrete information about scientists’ views were more likely to report believing that climate change was already underway and that it was caused by humans. However, their beliefs about the necessity of making policy decisions and their willingness to donate money to combat climate change were not affected. Information provision affected liberals, moderates, and conservatives similarly, implying that the gap in beliefs between liberals and conservatives is not likely to be bridged by information treatments similar to the one we study. Finally, we conducted a 6-month follow-up with respondents to see if the treatment effect persisted; the results were statistically inconclusive. 相似文献
2.
Psychologists have examined the many psychological barriers to both climate change belief and concern. One barrier is the belief that climate change is too uncertain, and likely to happen in distant places and times, to people unlike oneself. Related to this perceived psychological distance of climate change, studies have shown that direct experience of the effects of climate change increases climate change concern. The present study examined the relationship between physical proximity to the coastline and climate change belief, as proximity may be related to experiencing or anticipating the effects of climate change such as sea-level rise. We show, in a national probability sample of 5,815 New Zealanders, that people living in closer proximity to the shoreline expressed greater belief that climate change is real and greater support for government regulation of carbon emissions. This proximity effect held when adjusting for height above sea level and regional poverty. The model also included individual differences in respondents'' sex, age, education, political orientation, and wealth. The results indicate that physical place plays a role in the psychological acceptance of climate change, perhaps because the effects of climate change become more concrete and local. 相似文献
3.
Douglas H. Erwin 《Current biology : CB》2009,19(14):R575-R583
4.
The egg behaves as a prospective cell sustaining the developmental processes of the future embryo. In biosemiotic terms, this apparent teleonomic behaviour can be accounted for without referring to the exclusive causal role played by its genetic makeup. We envision two different processes that are uniquely found in the oocyte: (1) the first involves the mechanisms by which large amounts of mRNA accumulate in the ooplasm to establish the embryo axes prior to fertilization; (2) the second involves transfer of an excess of maternally supplied ribosomes to the oocyte to provide the future embryo with newly synthesized proteins. In this paper, we argue that the information required to sustain embryonic development is not due to any physical properties of the zygotic DNA and the maternal mRNAs, but to their spatially and temporally ordered relationship in the zygote’s internal space. 相似文献
5.
6.
7.
Individuals who identify changes in their local climate are also more likely to report that they have personally experienced global climate change. One way that people may come to recognize that their local climate is changing is through information provided by local TV weather forecasters. Using random digit dialing, 2,000 adult local TV news viewers in Virginia were surveyed to determine whether routine exposure to local TV weather forecasts influences their perceptions of extreme weather in Virginia, and their perceptions about climate change more generally. Results indicate that paying attention to TV weather forecasts is associated with beliefs that extreme weather is becoming more frequent in Virginia, which in turn is associated with stronger beliefs and concerns about climate change. These associations were strongest for individuals who trust their local TV weathercaster as a source of information about climate change, and for those who identify as politically conservative or moderate. The findings add support to the literature suggesting that TV weathercasters can play an important role in educating the public about climate change. 相似文献
8.
Human-caused climate change is happening; nearly all climate scientists are convinced of this basic fact according to surveys of experts and reviews of the peer-reviewed literature. Yet, among the American public, there is widespread misunderstanding of this scientific consensus. In this paper, we report results from two experiments, conducted with national samples of American adults, that tested messages designed to convey the high level of agreement in the climate science community about human-caused climate change. The first experiment tested hypotheses about providing numeric versus non-numeric assertions concerning the level of scientific agreement. We found that numeric statements resulted in higher estimates of the scientific agreement. The second experiment tested the effect of eliciting respondents’ estimates of scientific agreement prior to presenting them with a statement about the level of scientific agreement. Participants who estimated the level of agreement prior to being shown the corrective statement gave higher estimates of the scientific consensus than respondents who were not asked to estimate in advance, indicating that incorporating an “estimation and reveal” technique into public communication about scientific consensus may be effective. The interaction of messages with political ideology was also tested, and demonstrated that messages were approximately equally effective among liberals and conservatives. Implications for theory and practice are discussed. 相似文献
9.
Hector F. Castro Aimée T. Classen Emily E. Austin Richard J. Norby Christopher W. Schadt 《Applied and environmental microbiology》2010,76(4):999-1007
Researchers agree that climate change factors such as rising atmospheric [CO2] and warming will likely interact to modify ecosystem properties and processes. However, the response of the microbial communities that regulate ecosystem processes is less predictable. We measured the direct and interactive effects of climatic change on soil fungal and bacterial communities (abundance and composition) in a multifactor climate change experiment that exposed a constructed old-field ecosystem to different atmospheric CO2 concentration (ambient, +300 ppm), temperature (ambient, +3°C), and precipitation (wet and dry) might interact to alter soil bacterial and fungal abundance and community structure in an old-field ecosystem. We found that (i) fungal abundance increased in warmed treatments; (ii) bacterial abundance increased in warmed plots with elevated atmospheric [CO2] but decreased in warmed plots under ambient atmospheric [CO2]; (iii) the phylogenetic distribution of bacterial and fungal clones and their relative abundance varied among treatments, as indicated by changes in 16S rRNA and 28S rRNA genes; (iv) changes in precipitation altered the relative abundance of Proteobacteria and Acidobacteria, where Acidobacteria decreased with a concomitant increase in the Proteobacteria in wet relative to dry treatments; and (v) changes in precipitation altered fungal community composition, primarily through lineage specific changes within a recently discovered group known as soil clone group I. Taken together, our results indicate that climate change drivers and their interactions may cause changes in bacterial and fungal overall abundance; however, changes in precipitation tended to have a much greater effect on the community composition. These results illustrate the potential for complex community changes in terrestrial ecosystems under climate change scenarios that alter multiple factors simultaneously.Soil microbial communities are responsible for the cycling of carbon (C) and nutrients in ecosystems, and their activities are regulated by biotic and abiotic factors such as the quantity and quality of litter inputs, temperature, and moisture. Atmospheric and climatic changes will impact both abiotic and biotic drivers in ecosystems and the response of ecosystems to these changes. Feedbacks from ecosystem to the atmosphere may also be regulated by soil microbial communities (3). Although microbial communities regulate important ecosystem processes, it is often unclear how the abundance and composition of microbial communities correlate with climatic perturbations and interact to effect ecosystem processes. As such, much of the ecosystem climate change research conducted to date has focused on macroscale responses to climatic change such as changes in plant growth (43, 44), plant community composition (2, 37), and coarse scale soil processes (14, 18, 21, 26), many of which may also indirectly interact to effect microbial processes. Studies that have addressed the role of microbial communities and processes have most often targeted gross parameters, such as microbial biomass, enzymatic activity, or basic microbial community profiles in response to single climate change factors (22, 28, 29, 33, 61, 63).Climate change factors such as atmospheric CO2 concentrations, warming, and altered precipitation regimes can potentially have both direct and indirect impacts on soil microbial communities. However, the direction and magnitude of these responses is uncertain. For example, the response of soil microbial communities to changes in atmospheric CO2 concentrations can be positive or negative, and consistent overall trends between sites and studies have not been observed (1, 28, 34-36). Further, depending on what limits ecosystem productivity, precipitation and soil moisture changes may increase or decrease the ratio of bacteria and fungi, as well as shift their community composition (8, 50, 58). Increasing temperatures can increase in microbial activity, processing, and turnover, causing the microbial community to shift in favor of representatives adapted to higher temperatures and faster growth rates (7, 46, 60, 64, 65). Atmospheric and climatic changes are happening in concert with one another so that ecosystems are experiencing higher levels of atmospheric CO2, warming, and changes in precipitation regimes simultaneously. Although the many single factor climate change studies described above have enabled a better understanding of how microbial communities may respond to any one factor, understanding how multiple climate change factors interact with each other to influence microbial community responses is poorly understood. For example, elevated atmospheric [CO2] and precipitation changes might increase soil moisture in an ecosystem, but this increase may be counteracted by warming (10). Similarly, warming may increase microbial activity in an ecosystem, but this increase may be eliminated if changes in precipitation lead to a drier soil condition or reduced litter quantity, quality, and turnover. Such interactive effects of climate factors in a multifactorial context have been less commonly studied even in plant communities (45), and detailed studies are rarer still in soil microbial communities (25). Clearly, understanding how microbial communities will respond to these atmospheric and climate change drivers is important to make accurate predications of how ecosystems may respond to future climate scenarios.To address how multiple climate change drivers will interact to shape soil microbial communities, we took advantage of a multifactor climatic change experiment that manipulated atmospheric CO2 (+300 ppm, ambient), warming (+3°C, ambient) and precipitation (wet and dry) in a constructed old-field ecosystem that had been ongoing for 3.5 years at the time of sampling. Previous work on this project has demonstrated direct and interactive effects of the treatments on plant community composition and biomass (15, 30), soil respiration (56), microbial activity (30), nitrogen fixation (21), and soil carbon stocks (20). These results led us to investigations of how the soil bacterial and fungal communities, important regulators of some of these processes, were responding using culture-independent molecular approaches. Our research addresses two overarching questions. (i) Do climatic change factors and their interactions alter bacterial and fungal abundance and diversity? (ii) Do climatic change factors and their interactions alter bacterial or fungal community composition? 相似文献
10.
11.
The relationship between climate change and the macroeconomy in pre-industrial Europe has attracted considerable attention in recent years. This study follows the combined paradigms of evolutionary economics and ecological economics, in which wavelet analysis (spectrum analysis and coherence analysis) is applied as the first attempt to examine the relationship between climate change and the macroeconomic structure in pre-industrial Europe in the frequency domain. Aside from confirming previous results, this study aims to further substantiate the association between climate change and macroeconomy by presenting new evidence obtained from the wavelet analysis. Our spectrum analysis shows a consistent and continuous frequency band of 60–80 years in the temperature, grain yield ratio, grain price, consumer price index, and real wage throughout the study period. Besides, coherence analysis shows that the macroeconomic structure is shaped more by climate change than population change. In addition, temperature is proven as a key climatic factor that influences the macroeconomic structure. The analysis reveals a unique frequency band of about 20 years (15–35 years) in the temperature in AD1600-1700, which could have contributed to the widespread economic crisis in pre-industrial Europe. Our findings may have indications in re-examining the Malthusian theory. 相似文献
12.
13.
Felipe J. Colón-González Carlo Fezzi Iain R. Lake Paul R. Hunter 《PLoS neglected tropical diseases》2013,7(11)
Background
There is much uncertainty about the future impact of climate change on vector-borne diseases. Such uncertainty reflects the difficulties in modelling the complex interactions between disease, climatic and socioeconomic determinants. We used a comprehensive panel dataset from Mexico covering 23 years of province-specific dengue reports across nine climatic regions to estimate the impact of weather on dengue, accounting for the effects of non-climatic factors.Methods and Findings
Using a Generalized Additive Model, we estimated statistically significant effects of weather and access to piped water on dengue. The effects of weather were highly nonlinear. Minimum temperature (Tmin) had almost no effect on dengue incidence below 5°C, but Tmin values above 18°C showed a rapidly increasing effect. Maximum temperature above 20°C also showed an increasing effect on dengue incidence with a peak around 32°C, after which the effect declined. There is also an increasing effect of precipitation as it rose to about 550 mm, beyond which such effect declines. Rising access to piped water was related to increasing dengue incidence. We used our model estimations to project the potential impact of climate change on dengue incidence under three emission scenarios by 2030, 2050, and 2080. An increase of up to 40% in dengue incidence by 2080 was estimated under climate change while holding the other driving factors constant.Conclusions
Our results indicate that weather significantly influences dengue incidence in Mexico and that such relationships are highly nonlinear. These findings highlight the importance of using flexible model specifications when analysing weather–health interactions. Climate change may contribute to an increase in dengue incidence. Rising access to piped water may aggravate dengue incidence if it leads to increased domestic water storage. Climate change may therefore influence the success or failure of future efforts against dengue. 相似文献14.
15.
16.
17.
Projected Loss of a Salamander Diversity Hotspot as a Consequence of Projected Global Climate Change
Background
Significant shifts in climate are considered a threat to plants and animals with significant physiological limitations and limited dispersal abilities. The southern Appalachian Mountains are a global hotspot for plethodontid salamander diversity. Plethodontids are lungless ectotherms, so their ecology is strongly governed by temperature and precipitation. Many plethodontid species in southern Appalachia exist in high elevation habitats that may be at or near their thermal maxima, and may also have limited dispersal abilities across warmer valley bottoms.Methodology/Principal Findings
We used a maximum-entropy approach (program Maxent) to model the suitable climatic habitat of 41 plethodontid salamander species inhabiting the Appalachian Highlands region (33 individual species and eight species included within two species complexes). We evaluated the relative change in suitable climatic habitat for these species in the Appalachian Highlands from the current climate to the years 2020, 2050, and 2080, using both the HADCM3 and the CGCM3 models, each under low and high CO2 scenarios, and using two-model thresholds levels (relative suitability thresholds for determining suitable/unsuitable range), for a total of 8 scenarios per species.Conclusion/Significance
While models differed slightly, every scenario projected significant declines in suitable habitat within the Appalachian Highlands as early as 2020. Species with more southern ranges and with smaller ranges had larger projected habitat loss. Despite significant differences in projected precipitation changes to the region, projections did not differ significantly between global circulation models. CO2 emissions scenario and model threshold had small effects on projected habitat loss by 2020, but did not affect longer-term projections. Results of this study indicate that choice of model threshold and CO2 emissions scenario affect short-term projected shifts in climatic distributions of species; however, these factors and choice of global circulation model have relatively small affects on what is significant projected loss of habitat for many salamander species that currently occupy the Appalachian Highlands. 相似文献18.
19.
Ecosystems - Nutrient reduction in impacted lowland freshwater systems is ecologically and culturally important. Gaining a greater insight into how lakes respond to lowering nutrient loads and how... 相似文献
20.
Jonathan A. Patz Holly K. Gibbs Jonathan A. Foley Jamesine V. Rogers Kirk R. Smith 《EcoHealth》2007,4(4):397-405
Climate change, as an environmental hazard operating at the global scale, poses a unique and “involuntary exposure” to many
societies, and therefore represents possibly the largest health inequity of our time. According to statistics from the World
Health Organization (WHO), regions or populations already experiencing the most increase in diseases attributable to temperature
rise in the past 30 years ironically contain those populations least responsible for causing greenhouse gas warming of the
planet. Average global carbon emissions approximate one metric ton per year (tC/yr) per person. In 2004, United States per
capita emissions neared 6 tC/yr (with Canada and Australia not far behind), and Japan and Western European countries range
from 2 to 5 tC/yr per capita. Yet developing countries’ per capita emissions approximate 0.6 tC/yr, and more than 50 countries
are below 0.2 tC/yr (or 30-fold less than an average American). This imbalance between populations suffering from an increase
in climate-sensitive diseases versus those nations producing greenhouse gases that cause global warming can be quantified
using a “natural debt” index, which is the cumulative depleted CO2 emissions per capita. This is a better representation of the responsibility for current warming than a single year’s emissions.
By this measure, for example, the relative responsibilities of the U.S. in relation to those of India or China is nearly double
that using an index of current emissions, although it does not greatly change the relationship between India and China. Rich
countries like the U.S. have caused much more of today’s warming than poor ones, which have not been emitting at significant
levels for many years yet, no matter what current emissions indicate. Along with taking necessary measures to reduce the extent
of global warming and the associated impacts, society also needs to pursue equitable solutions that first protect the most
vulnerable population groups; be they defined by demographics, income, or location. For example, according to the WHO, 88%
of the disease burden attributable to climate change afflicts children under age 5 (obviously an innocent and “nonconsenting”
segment of the population), presenting another major axis of inequity. Not only is the health burden from climate change itself
greatest among the world’s poor, but some of the major mitigation approaches to reduce the degree of warming may produce negative
side effects disproportionately among the poor, for example, competition for land from biofuels creating pressure on food
prices. Of course, in today’s globalized world, eventually all nations will share some risk, but underserved populations will
suffer first and most strongly from climate change. Moreover, growing recognition that society faces a nonlinear and potentially
irreversible threat has deep ethical implications about humanity’s stewardship of the planet that affect both rich and poor. 相似文献