共查询到20条相似文献,搜索用时 15 毫秒
1.
Gregory Bonito Hannah Reynolds Michael S. Robeson II Jessica Nelson Brendan P. Hodkinson Gerald Tuskan Christopher W. Schadt Rytas Vilgalys 《Molecular ecology》2014,23(13):3356-3370
Microbial communities in plant roots provide critical links between above‐ and belowground processes in terrestrial ecosystems. Variation in root communities has been attributed to plant host effects and microbial host preferences, as well as to factors pertaining to soil conditions, microbial biogeography and the presence of viable microbial propagules. To address hypotheses regarding the influence of plant host and soil biogeography on root fungal and bacterial communities, we designed a trap‐plant bioassay experiment. Replicate Populus, Quercus and Pinus plants were grown in three soils originating from alternate field sites. Fungal and bacterial community profiles in the root of each replicate were assessed through multiplex 454 amplicon sequencing of four loci (i.e., 16S, SSU, ITS, LSU rDNA). Soil origin had a larger effect on fungal community composition than did host species, but the opposite was true for bacterial communities. Populus hosted the highest diversity of rhizospheric fungi and bacteria. Root communities on Quercus and Pinus were more similar to each other than to Populus. Overall, fungal root symbionts appear to be more constrained by dispersal and biogeography than by host availability. 相似文献
2.
Karin Groten Ali Nawaz Nam H. T. Nguyen Rakesh Santhanam Ian T. Baldwin 《Plant, cell & environment》2015,38(11):2398-2416
While the biochemical function of calcium and calmodulin‐dependent protein kinase (CCaMK) is well studied, and plants impaired in the expression of CCaMK are known not to be infected by arbuscular mycorrhizal fungi (AMF) in glasshouse studies, the whole‐plant and ecological consequences of CCaMK silencing are not well understood. Here we show that three independently transformed lines of Nicotiana attenuata plants silenced in CCaMK (irCCaMK) are neither infected by Rhizophagus irregularis in the glasshouse nor by native fungal inoculum in the field. The overall fungal community of field‐grown roots did not differ significantly among empty vector (EV) and the transgenic lines, and the bacterial communities only showed minor differences, as revealed by the alpha‐diversity parameters of bacterial OTUs, which were higher in EV plants compared with two of the three transformed lines, while beta‐diversity parameters did not differ. Furthermore, growth and fitness parameters were similar in the glasshouse and field. Herbivory‐inducible and basal levels of salicylic acid, jasmonic acid and abscisic acid did not differ among the genotypes, suggesting that activation of the classical defence pathways are not affected by CCaMK silencing. Based on these results, we conclude that silencing of CCaMK has few, if any, non‐target effects. 相似文献
3.
Rakesh Santhanam Youngjoo Oh Ramesh Kumar Arne Weinhold Van Thi Luu Karin Groten Ian T. Baldwin 《Molecular ecology》2017,26(9):2543-2562
Plants recruit microbial communities from the soil in which they germinate. Our understanding of the recruitment process and the factors affecting it is still limited for most microbial taxa. We analysed several factors potentially affecting root microbiome structure – the importance of geographic location of natural populations, the microbiome of native seeds as putative source of colonization and the effect of a plant's response to UVB exposure on root colonization of highly abundant species. The microbiome of Nicotiana attenuata seeds was determined by a culture‐dependent and culture‐independent approach, and the root microbiome of natural N. attenuata populations from five different locations was analysed using 454‐pyrosequencing. To specifically address the influence of UVB light on root colonization by Deinococcus, a genus abundant and consistently present in N. attenuata roots, transgenic lines impaired in UVB perception (irUVR8) and response (irCHAL) were investigated in a microcosm experiment with/without UVB supplementation using a synthetic bacterial community. The seed microbiome analysis indicated that N. attenuata seeds are sterile. Alpha and beta diversities of native root bacterial communities differed significantly between soil and root, while location had only a significant effect on the fungal but not the bacterial root communities. With UVB supplementation, root colonization of Deinococcus increased in wild type, but decreased in irUVR8 and irCHAL plants compared to nontreated plants. Our results suggest that N. attenuata recruits a core root microbiome exclusively from soil, with fungal root colonization being less selective than bacterial colonization. Root colonization by Deinococcus depends on the plant's response to UVB. 相似文献
4.
5.
Barbara Drigo George A. Kowalchuk Brigitte A. Knapp Agata S. Pijl Henricus T. S. Boschker Johannes A. van Veen 《Global Change Biology》2013,19(2):621-636
Carbon (C) uptake by terrestrial ecosystems represents an important option for partially mitigating anthropogenic CO2 emissions. Short‐term atmospheric elevated CO2 exposure has been shown to create major shifts in C flow routes and diversity of the active soil‐borne microbial community. Long‐term increases in CO2 have been hypothesized to have subtle effects due to the potential adaptation of soil microorganism to the increased flow of organic C. Here, we studied the effects of prolonged elevated atmospheric CO2 exposure on microbial C flow and microbial communities in the rhizosphere. Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown at defined atmospheric conditions differing in CO2 concentration (350 and 700 ppm) for 3 years. During this period, C flow was assessed repeatedly (after 6 months, 1, 2, and 3 years) by 13C pulse‐chase experiments, and label was tracked through the rhizosphere bacterial, general fungal, and arbuscular mycorrhizal fungal (AMF) communities. Fatty acid biomarker analyses and RNA‐stable isotope probing (RNA‐SIP), in combination with real‐time PCR and PCR‐DGGE, were used to examine microbial community dynamics and abundance. Throughout the experiment the influence of elevated CO2 was highly plant dependent, with the mycorrhizal plant exerting a greater influence on both bacterial and fungal communities. Biomarker data confirmed that rhizodeposited C was first processed by AMF and subsequently transferred to bacterial and fungal communities in the rhizosphere soil. Over the course of 3 years, elevated CO2 caused a continuous increase in the 13C enrichment retained in AMF and an increasing delay in the transfer of C to the bacterial community. These results show that, not only do elevated atmospheric CO2 conditions induce changes in rhizosphere C flow and dynamics but also continue to develop over multiple seasons, thereby affecting terrestrial ecosystems C utilization processes. 相似文献
6.
Owing to previous methodological limitations, knowledge about the fine-scale distribution of fungal mycelia in decaying logs is limited. We investigated fungal communities in decaying Norway spruce logs at various spatial scales at two environmentally different locations in Sweden. On the basis of 454 pyrosequencing of the ITS2 region of rDNA, 1914 operational taxonomic units (OTUs) were detected in 353 samples. The communities differed significantly among logs, but the physical distance between logs was not found to have a significant effect on whether fungal communities had any resemblance to each other. Within a log, samples that were closer together generally had communities that showed more resemblance to each other than those that were further apart. OTUs characteristic for particular positions on the logs could be identified. In general, these OTUs did not overlap with the most abundant OTUs, and their ecological role was often unknown. Only a few OTUs were detected in the majority of logs, whereas numerous OTUs were rare and present in only one or a few logs. Wood-decaying Basidiomycetes were often represented by higher sequence reads in individual logs than Ascomycete OTUs, suggesting that Basidiomycete mycelia spread out more rapidly when established. OTU richness tended to increase with the decay stage of the sample; however, the known wood decayers were most abundant in less-decomposed samples. The fungi identified in the logs represented different ecological strategies. Our findings differ from previously published sporocarp studies, indicating that the highly abundant fruiting species may respond to environment in different ways than the rest of the fungal community. 相似文献
7.
8.
Péninna Deberdt Eric Gozé Régine Coranson‐Beaudu Benjamin Perrin Paula Fernandes Philippe Lucas Alain Ratnadass 《Journal of Phytopathology》2015,163(5):377-385
Ralstonia solanacearum is responsible for bacterial wilt affecting many crops worldwide. The emergent population of R. solanacearum (phylotype IIB/4NPB) wilts previously resistant varieties and has rapidly spread throughout Martinique. No conventional method is known to control it. In this study, previous crops used as sanitizing crops were investigated as an environmentally safe alternative method of control. The ability of the emergent population of R. solanacearum to persist in planta and in the rhizosphere of Brassicaceae, Asteraceae and Fabaceae grown as previous crops was evaluated in controlled conditions, and the incidence of bacterial wilt was assessed in the following tomato crop. Results showed that all species carried R. solanacearum latently. Among Brassicaceae and Asteraceae, the highest density of R. solanacearum was found in planta and in the rhizosphere of Tagetes erecta. The density of the R. solanacearum population in the rhizosphere of Raphanus sativus cv. Karacter was significantly higher than that in Raphanus sativus cv. Melody. In Fabaceae, the density of R. solanacearum population in planta was statistically similar in all species. The density of the R. solanacearum population in the rhizosphere of Crotalaria juncea was significantly higher than that in Crotalaria spectabilis. This study showed for the first time that Crotalaria spectabilis and Raphanus sativus cv. Melody grown as previous crops improve the performance of the following tomato with similar effects on R. solanacearum populations in the soil as bare soil. The incidence of the disease in tomato decreased by 86% and 60%, after R. sativus cv. Melody and C. spectabilis, respectively, and the proportion of infected plants also decreased. These results suggest that C. spectabilis and R. sativus cv. Melody can be used as previous crops to help bacterial wilt control in ecological management strategies without drastic suppression of R. solanacearum population in stem tissues and in the rhizosphere. 相似文献
9.
C. Wang J. Zhou J. Liu K. Jiang H. Xiao D. Du 《Plant biology (Stuttgart, Germany)》2018,20(1):151-159
- Soil fungal communities play an important role in the successful invasion of non‐native species. It is common for two or more invasive plant species to co‐occur in invaded ecosystems.
- This study aimed to determine the effects of co‐invasion of two invasive species (Erigeron annuus and Solidago canadensis) with different cover classes on soil fungal communities using high‐throughput sequencing.
- Invasion of E. annuus and/or S. canadensis had positive effects on the sequence number, operational taxonomic unit (OTU) richness, Shannon diversity, abundance‐based cover estimator (ACE index) and Chao1 index of soil fungal communities, but negative effects on the Simpson index. Thus, invasion of E. annuus and/or S. canadensis could increase diversity and richness of soil fungal communities but decrease dominance of some members of these communities, in part to facilitate plant further invasion, because high soil microbial diversity could increase soil functions and plant nutrient acquisition. Some soil fungal species grow well, whereas others tend to extinction after non‐native plant invasion with increasing invasion degree and presumably time. The sequence number, OTU richness, Shannon diversity, ACE index and Chao1 index of soil fungal communities were higher under co‐invasion of E. annuus and S. canadensis than under independent invasion of either individual species.
- The co‐invasion of the two invasive species had a positive synergistic effect on diversity and abundance of soil fungal communities, partly to build a soil microenvironment to enhance competitiveness of the invaders. The changed diversity and community under co‐invasion could modify resource availability and niche differentiation within the soil fungal communities, mediated by differences in leaf litter quality and quantity, which can support different fungal/microbial species in the soil.
10.
11.
12.
Fungal endophytes have been documented in almost all terrestrial plant groups. Although the endophyte infection syndrome in agronomic cultivars is well studied, relatively little work addresses questions of spatial ecology and fire effects on epichloae endophyte infection in native grasses, and none, to our knowledge, in sub‐Saharan Africa. We sampled seven populations of the native Festuca costata Nees along the spline of the Drakensberg range in South Africa at several spatial scales, including both recently burned and unburned stands. We tested epichloae presence and prevalence with immunoblot assays, PCR and genetic sequencing. We found epichloae endophytes were present and prevalent (38–98% infection rates depending on location). Variation in infection rates occurred primarily among locations, but also among bunches. There was little evidence that endophyte infection rates varied with fire. Novel evidence of epichloae infection of a native Festuca in South Africa opens the door to several new research questions, from the phylogenetic relationship between epichloae of sub‐Saharan Africa and other continents to the ecological advantages or disadvantages that endophytes confer upon their hosts, especially in a fire‐prone ecosystem vulnerable to global environmental change. 相似文献
13.
Marie L. Davey Einar Heegaard Rune Halvorsen Håvard Kauserud Mikael Ohlson 《Molecular ecology》2013,22(2):368-383
Although bryophytes are a dominant vegetation component of boreal and alpine ecosystems, little is known about their associated fungal communities. HPLC assays of ergosterol (fungal biomass) and amplicon pyrosequencing of the ITS2 region of rDNA were used to investigate how the fungal communities associated with four bryophyte species changed across an elevational gradient transitioning from conifer forest to the low‐alpine. Fungal biomass and OTU richness associated with the four moss hosts did not vary significantly across the gradient (P > 0.05), and both were more strongly affected by host and tissue type. Despite largely constant levels of fungal biomass, distinct shifts in community composition of fungi associated with Hylocomium, Pleurozium and Polytrichum occurred between the elevation zones of the gradient. This likely is a result of influence on fungal communities by major environmental factors such as temperature, directly or indirectly mediated by, or interacting with, the response of other components of the vegetation (i.e. the dominant trees). Fungal communities associated with Dicranum were an exception, exhibiting spatial autocorrelation between plots, and no significant structuring by elevation. Nevertheless, the detection of distinct fungal assemblages associated with a single host growing in different elevation zones along an elevational gradient is of particular relevance in the light of the ongoing changes in vegetation patterns in boreal and alpine systems due to global climate warming. 相似文献
14.
Phat T. Do Joann R. De Tar Hyeyoung Lee Michelle K. Folta Zhanyuan J. Zhang 《Plant biotechnology journal》2016,14(7):1532-1540
Switchgrass (Panicum virgatum L.) is considered a model herbaceous energy crop for the USA, for its adaptation to marginal land, low rainfall and nutrient‐deficient soils; however, its low biomass yield is one of several constraints, and this might be rectified by modulating plant growth regulator levels. In this study, we have determined whether the expression of the Zea mays gibberellin 20‐oxidase (ZmGA20ox) cDNA in switchgrass will improve biomass production. The ZmGA20ox gene was placed under the control of constitutive CaMV35S promoter with a strong TMV omega enhancer, and introduced into switchgrass via Agrobacterium‐mediated transformation. The transgene integration and expression levels of ZmGA20ox in T0 plants were analysed using Southern blot and qRT‐PCR. Under glasshouse conditions, selected transgenic plants exhibited longer leaves, internodes and tillers, which resulted in twofold increased biomass. These phenotypic alterations correlated with the levels of transgene expression and the particular gibberellin content. Expression of ZmGA20ox also affected the expression of genes coding for key enzymes in lignin biosynthesis. Our results suggest that the employment of ectopic ZmGA20ox and selection for natural variants with high level expression of endogenous GA20ox are appropriate approaches to increase biomass production of switchgrass and other monocot biofuel crops. 相似文献
15.
The mosquito midgut is a hostile environment that vector‐borne parasites must survive to be transmitted. Commensal bacteria in the midgut can reduce the ability of mosquitoes to transmit disease, either by having direct anti‐parasite effects or by stimulating basal immune responses of the insect host. As different bacteria have different effects on parasite development, the composition of the bacterial community in the mosquito gut is likely to affect the probability of disease transmission. We investigated the diversity of mosquito gut bacteria in the field using 454 pyrosequencing of 16S rRNA to build up a comprehensive picture of the diversity of gut bacteria in eight mosquito species in this population. We found that mosquito gut typically has a very simple gut microbiota that is dominated by a single bacterial taxon. Although different mosquito species share remarkably similar gut bacteria, individuals in a population are extremely variable and can have little overlap in the bacterial taxa present in their guts. This may be an important factor in causing differences in disease transmission rates within mosquito populations. 相似文献
16.
Niran Patel Alison Colyer Steve Harris Lucy Holcombe Peter Andrew 《The Journal of eukaryotic microbiology》2017,64(3):286-292
Periodontal disease is one of the most important health concerns for companion animals. Research into canine forms of periodontitis has focused on the identification and characterization of the bacterial communities present. However, other microorganisms are known to inhabit the oral cavity and could also influence the disease process. A novel, broad spectrum 18S PCR was developed and used, in conjunction with next‐generation sequencing analyses to target the identification of protists. Trichomonas sp. and Entamoeba sp. were identified from 92 samples of canine plaque. The overall prevalence of trichomonads was 56.52% (52/92) and entamoebae was 4.34% (4/92). Next‐generation sequencing of pooled healthy, gingivitis, early‐stage periodontitis, and severe periodontitis samples revealed the proportion of trichomonad sequences to be 3.51% (health), 2.84% (gingivitis), 6.07% (early periodontitis), and 35.04% (severe periodontitis), respectively, and entamoebae to be 0.01% (health), 0.01% (gingivitis), 0.80% (early‐stage periodontitis), and 7.91% (severe periodontitis) respectively. Both genera of protists were statistically associated with plaque from dogs with periodontal disease. These findings provide the first conclusive evidence for the presence of oral protozoa in dog plaque and suggest a possible role for protozoa in the periodontal disease process. 相似文献
17.
S. Truyens B. Beckers S. Thijs N. Weyens A. Cuypers J. Vangronsveld 《Plant biology (Stuttgart, Germany)》2016,18(3):376-381
Trans‐generational adaptation is important to respond rapidly to environmental challenges and increase overall plant fitness. Besides well‐known mechanisms such as epigenetic modifications, vertically transmitted endophytic bacteria might contribute to this process. The cultivable and total endophytic communities of several generations of Arabidopsis thaliana seeds harvested from plants exposed to cadmium (Cd) or not exposed were investigated. The diversity and richness of the seed endophytic community decreased with an increasing number of generations. Aeromicrobium and Pseudonocardia were identified as indicator species in seeds from Cd‐exposed plants, while Rhizobium was abundantly present in both seed types. Remarkably, Rhizobium was the only genus that was consistently detected in seeds of all generations, which suggests that the phenotypic characteristics were more important as selection criteria for which bacteria are transferred to the next plant generation than the actual genera. Production of IAA was an important trait for endophytes from both seed types, while ACC deaminase activity and Cd tolerance were mainly associated with seed endophytes from Cd‐exposed plants. Understanding how different factors influence the seed endophytic community can help us to improve seed quality and plant growth through different biotechnological applications. 相似文献
18.
S. B. Andersen L. H. Hansen P. Sapountzis S. J. Sørensen J. J. Boomsma 《Molecular ecology》2013,22(16):4307-4321
The stability of mutualistic interactions is likely to be affected by the genetic diversity of symbionts that compete for the same functional niche. Fungus‐growing (attine) ants have multiple complex symbioses and thus provide ample opportunities to address questions of symbiont specificity and diversity. Among the partners are Actinobacteria of the genus Pseudonocardia that are maintained on the ant cuticle to produce antibiotics, primarily against a fungal parasite of the mutualistic gardens. The symbiosis has been assumed to be a hallmark of evolutionary stability, but this notion has been challenged by culturing and sequencing data indicating an unpredictably high diversity. We used 454 pyrosequencing of 16S rRNA to estimate the diversity of the cuticular bacterial community of the leaf‐cutting ant Acromyrmex echinatior and other fungus‐growing ants from Gamboa, Panama. Both field and laboratory samples of the same colonies were collected, the latter after colonies had been kept under laboratory conditions for up to 10 years. We show that bacterial communities are highly colony‐specific and stable over time. The majority of colonies (25/26) had a single dominant Pseudonocardia strain, and only two strains were found in the Gamboa population across 17 years, confirming an earlier study. The microbial community on newly hatched ants consisted almost exclusively of a single strain of Pseudonocardia while other Actinobacteria were identified on older, foraging ants in varying but usually much lower abundances. These findings are consistent with recent theory predicting that mixtures of antibiotic‐producing bacteria can remain mutualistic when dominated by a single vertically transmitted and resource‐demanding strain. 相似文献
19.
Estelle Kilias Christian Wolf Eva‐Maria Nöthig Ilka Peeken Katja Metfies 《Journal of phycology》2013,49(5):996-1010
In this study, we present the first comprehensive analyses of the diversity and distribution of marine protist (micro‐, nano‐, and picoeukaryotes) in the Western Fram Strait, using 454‐pyrosequencing and high‐pressure liquid chromatography (HPLC) at five stations in summer 2010. Three stations (T1; T5; T7) were influenced by Polar Water, characterized by cold water with lower salinity (<33) and different extents of ice concentrations. Atlantic Water influenced the other two stations (T6; T9). While T6 was located in the mixed water zone characterized by cold water with intermediate salinity (~33) and high ice concentrations, T9 was located in warm water with high salinity (~35) and no ice‐coverage at all. General trends in community structure according to prevailing environmental settings, observed with both methods, coincided well. At two stations, T1 and T7, characterized by lower ice concentrations, diatoms (Fragilariopsis sp., Porosira sp., Thalassiosira spp.) dominated the protist community. The third station (T5) was ice‐covered, but has been ice‐free for ~4 weeks prior to sampling. At this station, dinoflagellates (Dinophyceae 1, Woloszynskia sp. and Gyrodinium sp.) were dominant, reflecting a post‐bloom situation. At station T6 and T9, the protist communities consisted mainly of picoeukaryotes, e.g., Micromonas spp. Based on our results, 454‐pyrosequencing has proven to be an adequate tool to provide comprehensive information on the composition of protist communities. Furthermore, this study suggests that a snap‐shot of a few, but well‐chosen samples can provide an overview of community structure patterns and succession in a dynamic marine environment. 相似文献
20.
Dan Wang Mathew W. Maughan Jindong Sun Xiaohui Feng Fernando Miguez DoKyoung Lee Michael C. Dietze 《Global Change Biology Bioenergy》2012,4(6):688-697
Nitrogen (N) addition typically increases overall plant growth, but the nature of this response depends upon patterns of plant nitrogen allocation that vary throughout the growing season and depend upon canopy position. In this study seasonal variations in leaf traits were investigated across a canopy profile in Miscanthus (Miscanthus × giganteus) under two N treatments (0 and 224 kg ha?1) to determine whether the growth response of Miscanthus to N fertilization was related to the response of photosynthetic capacity and nitrogen allocation. Miscanthus yielded 24.1 Mg ha?1 in fertilized plots, a 40% increase compared to control plots. Photosynthetic properties, such as net photosynthesis (A), maximum rate of rubisco carboxylation (Vcmax), stomatal conductance (gs) and PSII efficiency (Fv'/Fm'), all decreased significantly from the top of the canopy to the bottom, but were not affected by N fertilization. N fertilization increased specific leaf area (SLA) and leaf area index (LAI). Leaf N concentration in different canopy layers was increased by N fertilization and the distribution of N concentration within canopy followed irradiance gradients. These results show that the positive effect of N fertilization on the yield of Miscanthus was unrelated to changes in photosynthetic rates but was achieved mainly by increased canopy leaf area. Vertical measurements through the canopy demonstrated that Miscanthus adapted to the light environment by adjusting leaf morphological and biochemical properties independent of nitrogen treatments. GPP estimated using big leaf and multilayer models varied considerably, suggesting a multilayer model in which Vcmax changes both through time and canopy layer could be adopted into agricultural models to more accurately predict biomass production in biomass crop ecosystems. 相似文献