首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Langerhans cell histiocytosis (LCH) is a complex and poorly understood disorder that has characteristics of both inflammatory and neoplastic disease. By using eight-colour flow cytometry, we have identified a previously unreported population of CD1a+/CD3+ T-cells in LCH lesions. The expression of CD1a is regarded as a hallmark of this disease; however, it has always been presumed that it was only expressed by pathogenic Langerhans cells (LCs). We have now detected CD1a expression by a range of T-cell subsets within all of the LCH lesions that were examined, establishing that CD1a expression in these lesions is no longer restricted to pathogenic LCs. The presence of CD1a+ T-cells in all of the LCH lesions that we have studied to date warrants further investigation into their biological function to determine whether these cells are important in the pathogenesis of LCH.  相似文献   

2.
Expression of the IL-7 receptor α-chain (CD127) is decreased on CD8 T-cells in HIV infected patients and partially recovers in those receiving antiretroviral therapy with sustained viral suppression. We have shown that soluble HIV Tat protein down regulates CD127 expression on CD8 T-cells isolated from healthy HIV-negative individuals. Tat is taken up by CD8 T-cells via endocytosis, exits the endosome and then translocates to the inner leaflet of the cell membrane where it binds to the cytoplasmic tail of CD127 inducing receptor internalization and degradation by the proteasome. This down regulation of CD127 by Tat results in impaired CD8 T-cell function. Interestingly, suppression of CD127 by Tat is reversible and requires the continual presence of Tat in the culture media. We thus questioned whether the low IL-7 receptor expression evident on CD8 T-cells in HIV+ patients was similarly reversible and if suppression of the receptor could be maintained ex vivo by Tat protein alone. We show here that when CD8 T-cells isolated from HIV+ patients are incubated alone in fresh medium, low CD127 expression on the cell surface recovers to normal levels. This recovery of CD127, however, is completely inhibited by the addition of HIV Tat protein to the culture media. This study then provides evidence that soluble factor(s) are responsible for low CD127 expression on circulating CD8 T-cells in HIV+ individuals and further implicates Tat in suppressing this receptor essential to CD8 T-cell proliferation and function.  相似文献   

3.
The character of central nervous system (CNS) HIV infection and its effects on neuronal integrity vary with evolving systemic infection. Using a cross-sectional design and archived samples, we compared concentrations of cerebrospinal fluid (CSF) neuronal biomarkers in 143 samples from 8 HIV-infected subject groups representing a spectrum of untreated systemic HIV progression and viral suppression: primary infection; four groups of chronic HIV infection neuroasymptomatic (NA) subjects defined by blood CD4+ T cells of >350, 200–349, 50–199, and <50 cells/µL; HAD; treatment-induced viral suppression; and ‘elite’ controllers. Samples from 20 HIV-uninfected controls were also examined. The neuronal biomarkers included neurofilament light chain protein (NFL), total and phosphorylated tau (t-tau, p-tau), soluble amyloid precursor proteins alpha and beta (sAPPα, sAPPβ) and amyloid beta (Aβ) fragments 1–42, 1–40 and 1–38. Comparison of the biomarker changes showed a hierarchy of sensitivity in detection and suggested evolving mechanisms with progressive injury. NFL was the most sensitive neuronal biomarker. Its CSF concentration exceeded age-adjusted norms in all HAD patients, 75% of NA CD4<50, 40% of NA CD4 50–199, and 42% of primary infection, indicating common neuronal injury with untreated systemic HIV disease progression as well as transiently during early infection. By contrast, only 75% of HAD subjects had abnormal CSF t-tau levels, and there were no significant differences in t-tau levels among the remaining groups. sAPPα and β were also abnormal (decreased) in HAD, showed less marked change than NFL with CD4 decline in the absence of HAD, and were not decreased in PHI. The CSF Aβ peptides and p-tau concentrations did not differ among the groups, distinguishing the HIV CNS injury profile from Alzheimer''s disease. These CSF biomarkers can serve as useful tools in selected research and clinical settings for patient classification, pathogenetic analysis, diagnosis and management.  相似文献   

4.
The capacity of T-lymphocytes to recognize nonself and tolerating self is formed as a result of positive and negative selection in the thymus. While obtaining and testing specificity of T-hybridomas, we demonstrated that the major part of peripheral pool of CD8+ T-lymphocytes carried receptors specific to self MHC class II molecules. Such an unexpected specificity of receptors has been found in some T-cell hybridomas produced by fusion of activated peripheral CD8+ T-lymphocytes with a tumor partner transfected by the coreceptor CD4 gene. The reactivity to self is not an experimental artifact due to an increased avidity of interaction of the hybridoma cells with antigen-presenting cells. Also, it is not an expression of reactivity of T-cells to superantigens, products of endogenous viruses of mouse breast cancer. The formation of a pool of such T-cells involves both cells with double receptor specificity and cells coexpressing two -chains of T-cell receptor. Their appearance in the periphery can be due to the capacity of thymocytes differentiating in the direction of CD4+ cells to avoid negative selection via change of expression of coreceptor CD4 to CD8.  相似文献   

5.
CD8+ T cell responses are thought to play an important role during HIV infection, particularly in HIV controllers (HIC) in whom viral replication is spontaneously controlled without any treatment. We have demonstrated that CD8+ T cells from these subjects are able to suppress viral replication in vitro. In parallel, HIV-specific CD8+ responses were shown to be strong and of high quality, with proliferative abilities and cytotoxic capacities, in HIC. The HLA-B*57 allele, which is associated with a better clinical outcome in HIV infection, is overrepresented in HIC. However, we showed that these patients constitute a heterogeneous group that includes subjects who present weak suppression of viral replication in vitro and HIV-specific responses. We performed an extensive study of 101 HIC (49 HLA-B*57+ and 52 HLA-B*57) to determine the impact of HLA-B*57 on the HIV-specific CD8+ response. The HLA-B*57-restricted response displayed better qualitative features, such as higher functional avidity, higher proliferation capacity, and a higher level of cytokine production, than responses not restricted by HLA-B*57. However, the highest frequencies of HIV-specific CD8+ T cells were observed only in a subset of HLA-B*57+ subjects. They were tightly associated with the ability to suppress viral replication in vitro. In contrast, the subset of HLA-B*57+ subjects with a weak ability to suppress viral replication had significantly lower ultrasensitive viral loads than all the other groups of controllers. In conclusion, both HLA-B*57 and the amount of ultrasensitive viral load seem to play a role in HIV-specific CD8+ T cell responses in HIC.  相似文献   

6.
The association between the host immune environment and the size of the HIV reservoir during effective antiretroviral therapy is not clear. Progress has also been limited by the lack of a well-accepted assay for quantifying HIV during therapy. We examined the association between multiple measurements of HIV and T cell activation (as defined by markers including CD38, HLA-DR, CCR5 and PD-1) in 30 antiretroviral-treated HIV-infected adults. We found a consistent association between the frequency of CD4+ and CD8+ T cells expressing HLA-DR and the frequency of resting CD4+ T cells containing HIV DNA. This study highlights the need to further examine this relationship and to better characterize the biology of markers commonly used in HIV studies. These results may also have implications for reactivation strategies.  相似文献   

7.
CSF purines were grossly elevated compared with controls only in adenylosuccinate lyase (ADSL) deficiency and TB meningitis. The former representing low permeability, the latter severe damage to the normal blood/brain barrier. By contrast, the similarity to controls, with no difference between Lesch–Nyhan disease (LND) or LND variants, would exclude hypoxia as a factor in the severe neurological deficits in LND. Similar findings in purine nucleoside phosphorylase (PNP) deficiency (although nucleosides replace the normal bases) likewise exclude hypoxia in the aetiology of the albeit milder neurological deficits.  相似文献   

8.
In this study, the human cerebrospinal fluid (CSF) proteome was mapped using three different strategies prior to Orbitrap LC-MS/MS analysis: SDS-PAGE and mixed mode reversed phase-anion exchange for mapping the global CSF proteome, and hydrazide-based glycopeptide capture for mapping glycopeptides. A maximal protein set of 3081 proteins (28,811 peptide sequences) was identified, of which 520 were identified as glycoproteins from the glycopeptide enrichment strategy, including 1121 glycopeptides and their glycosylation sites. To our knowledge, this is the largest number of identified proteins and glycopeptides reported for CSF, including 417 glycosylation sites not previously reported. From parallel plasma samples, we identified 1050 proteins (9739 peptide sequences). An overlap of 877 proteins was found between the two body fluids, whereas 2204 proteins were identified only in CSF and 173 only in plasma. All mapping results are freely available via the new CSF Proteome Resource (http://probe.uib.no/csf-pr), which can be used to navigate the CSF proteome and help guide the selection of signature peptides in targeted quantitative proteomics.Cerebrospinal fluid (CSF)1 surrounds and supports the central nervous system (CNS), including the ventricles and subarachnoid space (1). About 80% of the total protein amount in CSF derives from size-dependent filtration of blood across the blood-brain barrier (BBB), and the rest originate from drainage of interstitial fluid from the CNS (24). Because CSF is in direct contact with the CNS, it should be a promising source for finding biomarkers for diseases in the CNS (5).Mapping studies characterizing the human CSF proteome and peptidome has previously been carried out using various experimental designs, including both healthy and disease-affected individuals (516). A total of 2630 proteins were detected in normal CSF by immunoaffinity depletion of high abundant proteins followed by strong cation exchange fractionation and LC-MS (5), whereas proteome and peptidome analyses of human CSF (collected for diagnostic purposes and turned out normal) by gel separation and trypsin digestion followed by LC-MS analysis have shown 798 proteins and 563 peptide products (derived from 91 precursor proteins) (6). In another publication, Pan et al. combined several proteomics studies in CSF from both normal subjects and subjects with neurological diseases and created a dataset of 2594 identified proteins (16). But in general, the availability and usefulness of published data from proteome mapping experiments is scarce, and the format of the data often makes searching and comparison across datasets difficult. Thus, organizing the data in online databases would greatly benefit the scientific community by making the data more accessible and easier to query. Current online databases containing MS data for CSF include the Sys-BodyFluid, with a total of 1286 CSF proteins from six studies (17). The proteome identifications database (PRIDE) (18) includes 19 studies on human CSF, but none reporting more than 103 identified proteins.Glycosylation is one of the most common post-translational modifications (PTMs), and many known clinical biomarkers as well as therapeutic targets are glycoproteins (1925). Furthermore, glycosylation plays important roles in cell communication, signaling, aging, and cell adhesion (26, 27). Nevertheless, there are few studies on glycoprotein identification in CSF. One study identified 216 glycoproteins in CSF using both lectin affinity and hydrazide chemistry (8), and another reported 36 N-linked and 44 O-linked glycosylation sites, from 23 and 22 glycoproteins respectively, by enriching for sialic-acid containing glycopeptides (28).Considering the sparse information about the CSF proteome available in public repositories, we have combined several proteomics approaches to create a map of the global CSF proteome, the CSF glycoproteome, and the respective plasma proteome from a pool of 21 (20 for the plasma pool) neurologically healthy individuals. The large amount of data generated through these four datasets (with linked and complementary information) would not easily be accessible through existing repositories. We therefore developed the open access CSF Proteome Resource (CSF-PR, www.probe.uib.no/csf-pr), an online database including the detailed data from the four different proteomics experiments described in this study. CSF-PR will be particularly useful in guiding the selection of appropriate signature peptides for the development of targeted CSF protein assays.  相似文献   

9.
10.

Background

Little is known of vitamin D concentration in cerebrospinal fluid (CSF) in Alzheimer´s disease (AD) and its relation with CSF acetylcholinesterase (AChE) activity, a marker of cholinergic function.

Methods

A cross-sectional study of 52 consecutive patients under primary evaluation of cognitive impairment and 17 healthy controls. The patients had AD dementia or mild cognitive impairment (MCI) diagnosed with AD dementia upon follow-up (n = 28), other dementias (n = 12), and stable MCI (SMCI, n = 12). We determined serum and CSF concentrations of calcium, parathyroid hormone (PTH), 25-hydroxyvitamin D (25OHD), and CSF activities of AChE and butyrylcholinesterase (BuChE).

Findings

CSF 25OHD level was reduced in AD patients (P < 0.05), and CSF AChE activity was decreased both in patients with AD (P < 0.05) and other dementias (P < 0.01) compared to healthy controls. None of the measured variables differed between BuChE K-variant genotypes whereas the participants that were homozygous in terms of the apolipoprotein E (APOE) ε4 allele had decreased CSF AChE activity compared to subjects lacking the APOE ε4 allele (P = 0.01). In AD patients (n=28), CSF AChE activity correlated positively with CSF levels of total tau (T-tau) (r = 0.44, P < 0.05) and phosphorylated tau protein (P-tau) (r = 0.50, P < 0.01), but CSF activities of AChE or BuChE did not correlate with serum or CSF levels of 25OHD.

Conclusions

In this pilot study, both CSF 25OHD level and CSF AChE activity were reduced in AD patients. However, the lack of correlations between 25OHD levels and CSF activities of AChE or BuChE might suggest different mechanisms of action, which could have implications for treatment trials.  相似文献   

11.
12.
HIV antigens can induce TGF-beta(1)-producing immunoregulatory CD8+ T cells   总被引:2,自引:0,他引:2  
HIV-infected individuals may progressively lose both HIV-specific and unrelated CTL responses despite the high number of circulating CD8+ T cells. In this study, we report that approximately 25% of HIV+ donors produced TGF-beta(1) in response to stimulation with HIV proteins or peptides. The production of TGF-beta(1) was sufficient to significantly reduce the IFN-gamma response of CD8+ cells to both HIV and vaccinia virus proteins. Ab to TGF-beta reversed the suppression. We found the source of the TGF-beta(1) to be predominantly CD8+ cells. Different peptide pools stimulated TGF-beta(1) and IFN-gamma in the same individual. The TGF-beta(1) secreting cells have distinct peptide specificity from the IFN-gamma producing cells. This represents an important mechanism by which an HIV-specific response can nonspecifically suppress both HIV-specific and unrelated immune responses.  相似文献   

13.
Squamous Cell Carcinoma (SCC) is a type of non-melanoma skin cancer prevalent in immune-suppressed transplant recipients and older individuals with a history of chronic sun-exposure. SCC itself is believed to be a late-stage manifestation that can develop from premalignant lesions including Intraepidermal Carcinoma (IEC). Notably, while SCC regression is rare, IEC typically regresses in response to immune modifying topical treatments, however the underlying immunological reasons for these differential responses remain unclear. This study aimed to define whether IEC and SCC are associated with distinct immune profiles. We investigated the immune cell infiltrate of photo-damaged skin, IEC, and SCC tissue using 10-colour flow cytometry following fresh lesion digest. We found that IEC lesions contain higher percentages of CD3+ T-cells than photo-damaged skin, however, the abundance of CD3CD56+ Natural Killer (NK) cells, CD11c+HLA-DR+ conventional Dendritic Cells (cDC), BDCA-2+HLA-DR+ plasmacytoid DC (pDC), FoxP3+ Regulatory T-cells (T-reg), Vα24+Vβ11+ invariant NKT-cells, and γδ Tcells did not alter with disease stage. Within the total T-cell population, high percentages of CD4+ T-cells were associated with SCC, yet CD8+ T-cells were less abundant in SCC compared with IEC. Our study demonstrates that while IEC lesions contain a higher proportion of T-cells than SCC lesions in general, SCC lesions specifically display a lower abundance of CD8+ T-cells than IEC. We propose that differences in CD8+ T-cell abundance contribute critically to the different capacity of SCC and IEC to regress in response to immune modifying topical treatments. Our study also suggests that a high ratio of CD4+ T-cells to CD8+ T-cells may be a immunological diagnostic indicator of late-stage SCC development in immune-competent patients.  相似文献   

14.
15.
The interleukin-23 (IL-23) pathway plays a critical role in the pathogenesis of multiple chronic inflammatory disorders, however, inter-individual variability in IL-23-induced signal transduction in circulating human lymphocytes has not been well-defined. In this study, we observed marked, reproducible inter-individual differences in IL-23 responsiveness (measured by STAT3 phosphorylation) in peripheral blood CD8+CD45RO+ memory T and CD3+CD56+ NKT cells. Age, but not gender, was a significant (Pearson’s correlation coefficient, r = −0.37, p = 0.001) source of variability observed in CD8+CD45RO+ memory T cells, with IL-23 responsiveness gradually decreasing with increasing age. Relative to cells from individuals demonstrating low responsiveness to IL-23 stimulation, CD8+CD45RO+ memory T cells from individuals demonstrating high responsiveness to IL-23 stimulation showed increased gene expression for IL-23 receptor (IL-23R), RORC (RORγt) and CD161 (KLRB1), whereas RORA (RORα) and STAT3 expression were equivalent. Similar to CD4+ memory T cells, IL-23 responsiveness is confined to the CD161+ subset in CD8+CD45RO+ memory T cells, suggesting a similar CD161+ precursor as has been reported for CD4+ Th17 cells. We observed a very strong positive correlation between IL-23 responsiveness and the fraction of CD161+, CD8+CD45RO+ memory T cells (r = 0.80, p<0.001). Moreover, the fraction of CD161+, CD8+CD45RO+ memory T cells gradually decreases with aging (r = −0.34, p = 0.05). Our data define the inter-individual differences in IL-23 responsiveness in peripheral blood lymphocytes from the general population. Variable expression of CD161, IL-23R and RORC affects IL-23 responsiveness and contributes to the inter-individual susceptibility to IL-23-mediated defenses and inflammatory processes.  相似文献   

16.
17.
18.
19.
HIV-associated neurocognitive disorders (HAND) is characterized by development of cognitive, behavioral and motor abnormalities, and occur in approximately 50% of HIV infected individuals. Our current understanding of HAND emanates mainly from HIV-1 subtype B (clade B), which is prevalent in USA and Western countries. However very little information is available on neuropathogenesis of HIV-1 subtype C (clade C) that exists in Sub-Saharan Africa and Asia. Therefore, studies to identify specific neuropathogenic mechanisms associated with HAND are worth pursuing to dissect the mechanisms underlying this modulation and to prevent HAND particularly in clade B infection. In this study, we have investigated 84 key human synaptic plasticity genes differential expression profile in clade B and clade C infected primary human astrocytes by using RT2 Profile PCR Array human Synaptic Plasticity kit. Among these, 31 and 21 synaptic genes were significantly (≥3 fold) down-regulated and 5 genes were significantly (≥3 fold) up-regulated in clade B and clade C infected cells, respectively compared to the uninfected control astrocytes. In flow-cytometry analysis, down-regulation of postsynaptic density and dendrite spine morphology regulatory proteins (ARC, NMDAR1 and GRM1) was confirmed in both clade B and C infected primary human astrocytes and SK-N-MC neuroblastoma cells. Further, spine density and dendrite morphology changes by confocal microscopic analysis indicates significantly decreased spine density, loss of spines and decreased dendrite diameter, total dendrite and spine area in clade B infected SK-N-MC neuroblastoma cells compared to uninfected and clade C infected cells. We have also observed that, in clade B infected astrocytes, induction of apoptosis was significantly higher than in the clade C infected astrocytes. In conclusion, this study suggests that down-regulation of synaptic plasticity genes, decreased dendritic spine density and induction of apoptosis in astrocytes may contribute to the severe neuropathogenesis in clade B infection.  相似文献   

20.
Acute T-cell lymphoblastic leukemia/lymphoma (T-ALL) is an aggressive hematopoietic malignancy affecting both children and adults. Previous studies of T-ALL mouse models induced by different genetic mutations have provided highly diverse results on the issues of T-cell leukemia/lymphoma-initiating cells (T-LICs) and potential mechanisms contributing to T-LIC transformation. Here, we show that oncogenic Kras (Kras G12D) expressed from its endogenous locus is a potent inducer of T-ALL even in a less sensitized BALB/c background. Notch1 mutations, including exon 34 mutations and recently characterized type 1 and 2 deletions, are detected in 100% of Kras G12D-induced T-ALL tumors. Although these mutations are not detected at the pre-leukemia stage, incremental up-regulation of NOTCH1 surface expression is observed at the pre-leukemia and leukemia stages. As secondary genetic hits in the Kras G12D model, Notch1 mutations target CD8+ T-cells but not hematopoietic stem cells to further promote T-ALL progression. Pre-leukemia T-cells without detectable Notch1 mutations do not induce T-ALL in secondary recipient mice compared with T-ALL tumor cells with Notch1 mutations. We found huge variations in T-LIC frequency and immunophenotypes of cells enriched for T-LICs. Unlike Pten deficiency-induced T-ALL, oncogenic Kras-initiated T-ALL is not associated with up-regulation of the Wnt/β-catenin pathway. Our results suggest that up-regulation of NOTCH1 signaling, through either overexpression of surface NOTCH1 or acquired gain-of-function mutations, is involved in both T-ALL initiation and progression. Notch1 mutations and Kras G12D contribute cooperatively to leukemogenic transformation of normal T-cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号