首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microalgal industry in China: challenges and prospects   总被引:2,自引:0,他引:2  
Over the past 15 years, China has become the major producer of microalgal biomass in the world. Spirulina (Arthrospira) is the largest microalgal product by tonnage and value, followed by Chlorella, Dunaliella, and Haematococcus, the four main microalgae grown commercially. China’s production is estimated at about two-thirds of global microalgae biomass of which roughly 90 % is sold for human consumption as human nutritional products (‘nutraceuticals’), with smaller markets in animal feeds mainly for marine aquaculture. Research is also ongoing in China, as in the rest of the world, for other high-value as well as commodity microalgal products, from pharmaceuticals to biofuels and CO2 capture and utilization. This paper briefly reviews the main challenges and potential solutions for expanding commercial microalgae production in China and the markets for microalgae products. The Chinese Microalgae Industry Alliance (CMIA), a network founded by Chinese microalgae researchers and commercial enterprises, supports this industry by promoting improved safety and quality standards, and advancement of technologies that can innovate and increase the markets for microalgal products. Microalgae are a growing source of human nutritional products and could become a future source of sustainable commodities, from foods and feeds, to, possibly, fuels and fertilizers.  相似文献   

2.
微藻是一类单细胞的光合自养真核生物,因为生长速度快,油脂含量高,对土地和水资源的要求宽松而被认为是下一代的液体燃料来源。此外,微藻还能够生产多种多样的天然化合物,包括微藻多糖、长链不饱和脂肪酸、色素和生物碱等。与植物中丰富的生物碱研究相比,对微藻中生物碱的研究仍处于起步阶段。微藻中的许多天然产物,通常具有多样性的生物活性,可以作为食品添加剂、营养保健品乃至医药,具有较高的经济价值。本文将简要介绍微藻产生的几类高附加值产品,并就微藻中高附加值天然产物的挖掘策略与规模化培养做简要的探讨。  相似文献   

3.
Microalgae have been used commercially as a feedstock for the production of high-value compounds, pigments, cosmetics, and nutritional supplements. In addition, because of their rapid growth rates, high photosynthetic efficiency, and high lipid and protein content, commodity products including biodiesel, feed supplements, and polyunsaturated fatty acids derived from algal biomass are of current interest. Since microalgae lack non-photosynthetic structures and float in water, they do not need massive amounts of structural cellulose found in land plants. Thus, under optimal culture conditions, some oleaginous species can allocate up to 70 % of their biomass to lipids. Lipid production and its regulation in microalgae are species-specific and influenced by environmental conditions. Various strategies have been developed to improve lipid productivity and fatty acid composition to meet specific production goals. Manipulation of physiochemical parameters, trophic modes, and nutrient levels, known as process engineering, is a simple approach that leads to desired alterations in the biochemical composition of algal biomass, including lipid quantity and quality. In this paper, we review the effects of manipulating biochemical parameters such as necessary nutrients (C, N, P, S, Fe, and Si), NaCl concentration, and pH of culture medium to optimize lipid content and profile in some algae strains with commercial potential.  相似文献   

4.
The selection of cultivation conditions for enhancing the productivity and yields of key metabolites are essential for the economic viability of the microalgae-based biorefinery process. The effects of cultivation parameters on microalgal physiology are often species or strain specific. It is hence critical to establish baseline parameters for newly isolated strains and manipulate the culture conditions to optimise their metabolite yields.In this study, five microalgae strains isolated from the west of Ireland were cultivated under varying macronutrient concentrations (NaNO3 and NaH2PO4) and phytohormones (salicylic acid and methyl jasmonate) supplementation to establish their effects on growth rates, photosynthetic pigments and overall biochemical composition.Increasing the medium nitrate content 3-fold resulted in a significant increase in growth, pigments and lipids for 4 of the 5 strains. Methyl jasmonate supplementation caused an increase in carotenoids and lipids in all strains in a dose- and species-specify manner. Salicylic acid treatment induced an increase in protein content in Rhodella sp. APOT_15 and the two chlorophyta strains, K. aperta DMGFW_21 and B. submarina APSW_11.Overall, tailoring the cultivation conditions for each strain can lead to improved strain performance and the identification of key process parameters for the upscaled production of high-value metabolites.  相似文献   

5.
Many species of microalgae produce greatly enhanced amounts of triacylglycerides (TAGs), the key product for biodiesel production, in response to specific environmental stresses. Improvement of TAG production by microalgae through optimization of growth regimes is of great interest. This relies on understanding microalgal lipid metabolism in relation to stress response in particular the deprivation of nutrients that can induce enhanced TAG synthesis. In this study, a detailed investigation of changes in lipid composition in Chlorella sp. and Nannochloropsis sp. in response to nitrogen deprivation (N-deprivation) was performed to provide novel mechanistic insights into the lipidome during stress. As expected, an increase in TAGs and an overall decrease in polar lipids were observed. However, while most membrane lipid classes (phosphoglycerolipids and glycolipids) were found to decrease, the non-nitrogen containing phosphatidylglycerol levels increased considerably in both algae from initially low levels. Of particular significance, it was observed that the acyl composition of TAGs in Nannochloropsis sp. remain relatively constant, whereas Chlorella sp. showed greater variability following N-deprivation. In both algae the overall fatty acid profiles of the polar lipid classes were largely unaffected by N-deprivation, suggesting a specific FA profile for each compartment is maintained to enable continued function despite considerable reductions in the amount of these lipids. The changes observed in the overall fatty acid profile were due primarily to the decrease in proportion of polar lipids to TAGs. This study provides the most detailed lipidomic information on two different microalgae with utility in biodiesel production and nutraceutical industries and proposes the mechanisms for this rearrangement. This research also highlights the usefulness of the latest MS-based approaches for microalgae lipid research.  相似文献   

6.
Microalgae are a major natural source for a vast array of valuable compounds, including a diversity of pigments, for which these photosynthetic microorganisms represent an almost exclusive biological resource. Yellow, orange, and red carotenoids have an industrial use in food products and cosmetics as vitamin supplements and health food products and as feed additives for poultry, livestock, fish, and crustaceans. The growing worldwide market value of carotenoids is projected to reach over US$1,000 million by the end of the decade. The nutraceutical boom has also integrated carotenoids mainly on the claim of their proven antioxidant properties. Recently established benefits in human health open new uses for some carotenoids, especially lutein, an effective agent for the prevention and treatment of a variety of degenerative diseases. Consumers’ demand for natural products favors development of pigments from biological sources, thus increasing opportunities for microalgae. The biotechnology of microalgae has gained considerable progress and relevance in recent decades, with carotenoid production representing one of its most successful domains. In this paper, we review the most relevant features of microalgal biotechnology related to the production of different carotenoids outdoors, with a main focus on β-carotene from Dunaliella, astaxanthin from Haematococcus, and lutein from chlorophycean strains. We compare the current state of the corresponding production technologies, based on either open-pond systems or closed photobioreactors. The potential of scientific and technological advances for improvements in yield and reduction in production costs for carotenoids from microalgae is also discussed.  相似文献   

7.
Coimmobilization of the freshwater microalga Chlorella vulgaris and the plant-growth-promoting bacterium Azospirillum brasilense in small alginate beads resulted in a significantly increased growth of the microalga. Dry and fresh weight, total number of cells, size of the microalgal clusters (colonies) within the bead, number of microalgal cells per cluster, and the levels of microalgal pigments significantly increased. Light microscopy revealed that both microorganisms colonized the same cavities inside the beads, though the microalgae tended to concentrate in the more aerated periphery while the bacteria colonized the entire bead. The effect of indole-3-acetic acid addition to microalgal culture prior to immobilization of microorganisms in alginate beads partially imitated the effect of A. brasilense. We propose that coimmobilization of microalgae and plant-growth-promoting bacteria is an effective means of increasing microalgal populations within confined environments.  相似文献   

8.
The lipid characteristics of microalgae are known to differ between species and change with growth conditions. This work provides a methodology for lipid characterization that enables selection of the optimal strain, cultivation conditions, and processing pathway for commercial biodiesel production from microalgae. Two different microalgal species, Nannochloropsis sp. and Chlorella sp., were cultivated under both nitrogen replete and nitrogen depleted conditions. Lipids were extracted and fractionated into three major classes and quantified gravimetrically. The fatty acid profile of each fraction was analyzed using GC–MS. The resulting quantitative lipid data for each of the cultures is discussed in the context of biodiesel and omega‐3 production. This approach illustrates how the growth conditions greatly affect the distribution of fatty acid present in the major lipid classes and therefore the suitability of the lipid extracts for biodiesel and other secondary products. Biotechnol. Bioeng. 2013; 110: 2096–2104. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
Under stress conditions, microalgae are known to accumulate large amounts of neutral lipids and carbohydrates, which can be used for biofuel production. However, on-line measurement of microalgal biochemical composition is a difficult task which makes the microalgal process rather difficult to manage. In this paper, we propose a so called adaptive interval observer for the on-line estimation of neutral lipid and carbohydrate quotas in microalgae. The observer is based on a change of coordinates that involves a time-varying gain. We introduce dynamics for the gain, whose trajectory converges toward a predefined optimal value (which maximizes the convergence rate of the observer). The observer performance is illustrated with experimental data of Isochrysis sp. cultures under nitrogen limitations and day–night cycle. The proposed observer design appears to be a suitable robust estimation technique.  相似文献   

10.
Cost-efficient harvesting of microalgae is a major challenge due to their small size and often low concentration in the culture medium. The flocculation efficacy of different inorganic and organic amendments was evaluated on various microalgae genera—one strain each belonging to Chlamydomonas, Chlorococcum, two of Botryococcus, and of Chlorella. An improvised medium comprising of commercial grade urea, single super phosphate, and muriate of potash was used to grow the microalgae for flocculation experiments. High pH induced increased flocculation efficiency (72–76 %) in selected microalgal strains. Ferric chloride was found to be the most efficient for most of the microalgal strains, while maize starch and rice starch proved superior for Chlorella sp. MCC6 and Botryococcus sp. MCC32. Although the highest flocculation efficiency was obtained with inorganic flocculant, i.e., ferric chloride (87.3 %) with Botryococcus MCC31, this was comparable with rice starch (86.8 %) for Botryococcus MCC32. This study showed that widely available cheaper biopolymers such as rice starch, maize, and potato starch can be promising flocculants due to their better harvesting efficiency (>80 %) and low price, thereby contributing to economical production of biodiesel from algae.  相似文献   

11.
The nutritive quality of Nannochloropsis gaditana cultured semicontinuously with different daily renewal rates was tested as a diet for short-term enrichment of the rotifer Brachionus plicatilis. After 24 h, dramatic differences in the survival, dry weight, and biochemical composition of the rotifers depending on the renewal rate of microalgal cultures were observed. Survival after the feeding period increased with increasing renewal rates. Rotifers fed microalgae from low renewal rate, nutrient-deficient cultures showed low dry weight and organic contents very similar to those of the initial rotifers that were starved for 12 h before the start of the feeding period. On the contrary, rotifers fed nutrient-sufficient microalgal cells underwent up to twofold increases of dry weight and protein, lipid, and carbohydrate contents with regard to rotifers fed nutrient-depleted N. gaditana. Consequently, feed conversion rate decreased in these conditions, indicating a better assimilation of the microalgal biomass obtained at high renewal rates. No single microalgal biochemical parameter among those studied can explain the response of the filter feeder. Similarly to gross composition, EPA and n-3 contents in rotifers fed microalgae from nutrient-sufficient cultures were double than the contents found in rotifers fed nutrient-limited microalgae. In addition, very high positive correlations between the contents of EPA and n-3 in N. gaditana and B. plicatilis were observed. These results demonstrate that selecting the appropriate conditions of semicontinuous culture can strongly enhance the nutritional value of microalgae that is reflected in the growth and biochemical composition of the filter-feeder even in short exposure periods.  相似文献   

12.
13.
《Biotechnology advances》2019,37(8):107419
Microalgae are considered promising functional food ingredients due to their balanced composition, containing multiple nutritional and health-beneficial components. However, their functionality in food products is not limited to health aspects, since microalgae can also play a structuring role in food, for instance as a texturizing ingredient. Photoautotrophic microalgae are actually rich in structural biopolymers such as proteins, storage polysaccharides, and cell wall related polysaccharides, and their presence might possibly alter the rheological properties of the enriched food product. A first approach to benefit from these structural biopolymers consists of isolating the cell wall related polysaccharides for use as food hydrocolloids. The potential of extracted cell wall polysaccharides as food hydrocolloids has only been shown for a few microalgae species, mainly due to an enormous diversity in molecular structure and composition. Nevertheless, with intrinsic viscosities comparable or higher than those of commercial thickening agents, extracellular polysaccharides of red microalgae and cyanobacteria could be a promising source of novel food hydrocolloids. A more sustainable approach would be to incorporate the whole microalgal biomass into food products, to combine health benefits with potential structuring benefits, i.e. providing desired rheological properties of the enriched food product. If microalgal biomass would act as a thickening agent, this would actually reduce the need for additional texturizing ingredients. Even though only limitedly studied so far, food processing operations have been proven successful in establishing desired microstructural and rheological properties. In fact, the use of cell disruption techniques allows the release of intracellular compounds, which become available to create strong particle aggregates resulting in an improved viscosity and network structure. Food processing operations might not only be favorable in terms of rheological properties, but also for enhancing the bioaccessibility of several bioactive compounds. However, this research area is only very scarcely explored, and there is a demand for more standardized research studies to draw conclusions on the effect of processing on the nutritional quality of food products enriched with microalgae. Even though considered as promising food ingredients, some major scientific challenges have been pointed out throughout this review paper for the successful design of microalgal based food products.  相似文献   

14.
Japan is one of leading countries in the utilization of and research on microalgae, and various findings have been obtained. Many papers, however, have been published in Japanese, which prevents the information spreading far and wide. The purpose of this review is to introduce recent advances in the utilization of microalgae as well as their basic research in Japan. The discussion covers practical applications ofChlorella andSpirulina biomass to health foods, food additives and feed supplements. The current use of microalgae as live feeds for larvae in aquaculture is also summarized. With respect to microalgal metabolites the present status of research is described with a greater emphasis on bioactive compounds, pigments and oils as potential drugs, coloring matters and biofuels, respectively.  相似文献   

15.
Although some interest in growing microalgae heterotrophically for the production of pigments was generated in the 1960s, only minimal commercial research was focused on this type of production technology until the 1980s. Recent developments indicating the nutritional and pharmaceutical importance of long chain omega-3 polyunsaturated fatty acids in the human diet have stimulated interest in microalgae as a source of these vital compounds, for they are the primary producers of these fatty acids in marine food webs. Food and pharmaceutical quality production can be enhanced both by the degree of process control and by the sterility achieved through a fermentation process, when compared to outdoor solar pond production. The data presented illustrate that microalgal-based heterotrophic production systems can exhibit omega-3 fatty acid productivities 2–3 orders of magnitude greater than those of outdoor pond systems. Additionally, long chain omega-3 fatty acid productivities reported for the microalgal fermentation systems are 1–2 orders of magnitude greater than productivities reported for fungal or bacterial systems.  相似文献   

16.
The Biotechnological Potential of Thraustochytrids   总被引:4,自引:0,他引:4  
Thraustochytrids are common marine microheterotrophs, taxonomically aligned with heterokont algae. Recent studies have shown that some thraustochytrid strains can be cultured to produce high biomass, containing substantial amounts of lipid rich in polyunsaturated fatty acid (PUFA). It is also evident that cell yield and PUFA production by some thraustochytrid strains can be varied by manipulation of physical and chemical parameters of the culture. At present, fish oils and cultured phototrophic microalgae are the main commercial sources of PUFA. The possible decline of commercial fish stocks and the relatively complex technology required to commercially produce microalgae have prompted research into possible alternative sources of PUFA. The culture of thraustochytrids and other PUFA-producing microheterotrophs is seen as one such alternative. Indeed, several thraustochytrid-based products are already on the market, and research into further applications is continuing. Many fish and microalgal oils currently available have relatively complex PUFA profiles, increasing the cost of preparation of high-purity PUFA oils. In contrast, some of the thraustochytrids examined to date have simpler PUFA profiles. If these or other strains can be grown in sufficient quantities and at an appropriate cost, the use of thraustochytrid-derived oils may decrease the high expense currently involved with producing high-purity microbial oils. As more is learned about the health and nutritional benefits of PUFA, demand for PUFA-rich products is expected to increase. Results to date suggest that thraustochytrids could form an important part in the supply of such products. Received February 17, 1999; accepted June 25, 1999  相似文献   

17.
The impact of different microalgal semicontinuous cultures on growth and biochemical composition in the next link of the food chain was tested using the filter feeder Artemia species as a model. The marine microalga Tetraselmis suecica was cultured semicontinuously with renewal rates between 10% and 50% and used to feed Artemia. Microalgal cultures maintained with a low renewal rate that had biochemical composition similar to that of the stationary-phase cultures commonly used in aquaculture produced poor growth and survival and low food-conversion efficiency compared to cultures maintained with a high renewal rate. Changes in the renewal rate in microalgal cultures also resulted in important changes in the gross biochemical composition of the filter feeder. The gross biochemical composition of the Artemia resembled that of the microalgae used as food except for total lipid content. The percentage of protein in the organic fraction of Artemia increased from 45% to 65% of the organic weight with increasing renewal rates in the microalgal cultures, while the carbohydrate percentage decreased under the same conditions. Higher renewal rates resulted in higher lipid percentages in the microalga, but in Artemia the percentage of lipids decreased from 19% of the organic weight with a renewal rate of 10%, to 13% with a renewal rate of 50%. The percentage of all polyunsaturated fatty acids in Artemia, including 20:5n-3, increased slightly with increasing renewal rates in the microalgal cultures. Results emphasize the importance of controlling microalgal nutritional value for the success of aquaculture food chains in which filter feeders are involved. Received October 15, 2000; accepted December 29, 2000.  相似文献   

18.
Reactions of higher plants (mustard, oat, rye, lettuce, dill and barley) and microalgae (Euglena gracilis) to the contamination of soil and water with oil and oil products was studied. The germination of seeds was analyzed. The length of sprouts, dry biomass and length of plant roots, as well as the optical density of microalgal broth culture were determined. Negative effects of soil and water contamination with oil and oil products on plant and microalgal parameters examined was shown. After biological destruction of contaminants by an association of destructor strains (Acinetobactersp., Mycobacterium flavescens andRhodoccocussp.), the toxicity of contaminated mediums decreased. The data suggest that the integral toxicity of soil and water contaminated with oil and oil products and toxicity changes during biodestruction of these pollutants can be analyzed by using plant test organisms.  相似文献   

19.
There are at least 40,000 species of microalgae in the aquatic environment. Fifteen species of marine dinoflagellates and freshwater cyanobacteria are known to produce paralytic shellfish toxins (PSTs) and represent a threat to human and/or livestock health. Although known toxic species are regularly monitored, the wider cross‐section of microalgae has not been systematically tested for PSTs. Advances in rapid screening techniques have resulted in the development of highly sensitive and specific methods to detect PSTs, including the sodium channel and saxiphilin binding assays. These assays were used in this study in 96‐well formats to screen 234 highly diverse isolates of Australian freshwater and marine microalgae for PSTs. The screening assays detected five toxic species, representing one freshwater cyanobacterium (Anabaena circinalis Rabenhorst) and four species of marine dinoflagellates (Alexandrium minutum Halim, A. catenella Balech, A. tamarense Balech, and Gymnodinium catenatum Graham). Liquid chromatography‐fluorescence detection was used to identify 14 saxitoxin analogues across the five species, and each species exhibited distinct toxin profiles. These results indicate that PST production is restricted to a narrow range of microalgal species found in Australian waters.  相似文献   

20.
Tequila vinasses (TVs) generated during Tequila production are brown liquid residues rich in nutrients. The nutrient content of agro-industrial effluents represents an excellent resource to support low-cost biomass production of microalgae; nonetheless, it is crucial to select the suitable microalgal strain to attain the highest biomass production in each residue used. In this study, biomass production, CO2 fixation from biogas, and cell compound accumulation by Chlorella vulgaris U162, Chlorella sp., Scenedesmus obliquus U169, and Scenedesmus sp. using biodigested and filtered TVs as culture medium were evaluated and compared with the conventional microalgal culture media, C30, BG-11, Bold 3N, and Bristol. The four microalgae evaluated attained the highest biomass production and CO2 fixation rate cultured in both residues, accumulating mainly carbohydrates and proteins although the most appropriate microalga to be cultured in TVs was Chlorella sp., recording 2.30 g L?1. Moreover, the nutrient ratio of filtered TVs was ideal to support biomass production while biodigested TVs need to be supplemented with nitrogen. Overall, these results demonstrated that tequila vinasses are an excellent resource to support high and quick biomass production of microalgae, which can be used to obtain biofuels as ethanol, biogas, and supplement food depicting an extra benefit during the appropriate disposal of this residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号