共查询到20条相似文献,搜索用时 15 毫秒
1.
Avian retrovirus DNA internal attachment site requirements for full-site integration in vitro 下载免费PDF全文
Concerted integration of retrovirus DNA termini into the host chromosome in vivo requires specific interactions between the cis-acting attachment (att) sites at the viral termini and the viral integrase (IN) in trans. In this study, reconstruction experiments with purified avian myeloblastosis virus (AMV) IN and retrovirus-like donor substrates containing wild-type and mutant termini were performed to map the internal att DNA sequence requirements for concerted integration, here termed full-site integration. The avian retrovirus mutations were modeled after internal att site mutations studied at the in vivo level with human immunodeficiency virus type 1 (HIV-1) and murine leukemia virus (MLV). Systematic overlapping 4-bp deletions starting at nucleotide positions 7, 8, and 9 in the U3 terminus had a decreasing detrimental gradient effect on full-site integration, while more internal 4-bp deletions had little or no effect. This decreasing detrimental gradient effect was measured by the ability of mutant U3 ends to interact with wild-type U3 ends for full-site integration in trans. Modification of the highly conserved C at position 7 on the catalytic strand to either A or T resulted in the same severe decrease in full-site integration as the 4-bp deletion starting at this position. These studies suggest that nucleotide position 7 is crucial for interactions near the active site of IN for integration activity and for communication in trans between ends bound by IN for full-site integration. The ability of AMV IN to interact with internal att sequences to mediate full-site integration in vitro is similar to the internal att site requirements observed with MLV and HIV-1 in vivo and with their preintegration complexes in vitro. 相似文献
2.
Retrovirus preintegration complexes (PIC) purified from virus-infected cells are competent for efficient concerted integration of the linear viral DNA ends by integrase (IN) into target DNA (full-site integration). In this report, we have shown that the assembled complexes (intasomes) formed in vitro with linear 3.6-kbp DNA donors possessing 3'-OH-recessed attachment (att) site sequences and avian myeloblastosis virus IN (4 nm) were as competent for full-site integration as isolated retrovirus PIC. The att sites on DNA with 3'-OH-recessed ends were protected by IN in assembled intasomes from DNase I digestion up to approximately 20 bp from the terminus. Several DNA donors containing either normal blunt-ended att sites or different end mutations did not allow assembly of complexes that exhibit the approximately 20-bp DNase I footprint at 14 degrees C. At 50 and 100 mm NaCl, the approximately 20-bp DNase I footprints were produced with wild type (wt) U3 and gain-of-function att site donors for full-site integration as previously observed at 320 mm NaCl. Although the wt U5 att site donors were fully competent for full-site integration at 37 degrees C, the approximately 20-bp DNase I footprint was not observed under a variety of assembly conditions including low NaCl concentrations at 14 degrees C. Under suboptimal assembly conditions for intasomes using U3 att DNA, DNase I probing demonstrated an enhanced cleavage site 9 bp from the end of U3 suggesting that a transient structural intasome intermediate was identified. Using a single nucleotide change at position 7 from the end and a series of small size deletions of wt U3 att site sequences, we determined that sequences upstream of the 11th nucleotide position were not required by IN to produce the approximately 20-bp DNase I footprint and full-site integration. The results suggest the structural organization of IN at the att sites in reconstituted intasomes was similar to that observed in PIC. 相似文献
3.
A large nucleoprotein assembly at the ends of the viral DNA mediates retroviral DNA integration. 总被引:9,自引:1,他引:8 下载免费PDF全文
We have probed the nucleoprotein organization of Moloney murine leukemia virus (MLV) pre-integration complexes using a novel footprinting technique that utilizes a simplified in vitro phage Mu transposition system. We find that several hundred base pairs at each end of the viral DNA are organized in a large nucleoprotein complex, which we call the intasome. This structure is not formed when pre-integration complexes are made by infecting cells with integrase-minus virus, demonstrating a requirement for integrase. In contrast, footprinting of internal regions of the viral DNA did not reveal significant differences between pre-integration complexes with and without integrase. Treatment with high salt disrupts the intasome in parallel with loss of intermolecular integration activity. We show that a cellular factor is required for reconstitution of the intasome. Finally, we demonstrate that DNA-protein interactions involving extensive regions at the ends of the viral DNA are functionally important for retroviral DNA integration activity. Current in vitro integration systems utilizing purified integrase lack the full fidelity of the in vivo reaction. Our results indicate that both host factors and long viral DNA substrates may be required to reconstitute an in vitro system with all the hallmarks of DNA integration in vivo. 相似文献
4.
5.
Synthesis of murine leukemia viral DNA in vitro: evidence for plus-strand DNA synthesis at both ends of the genome 总被引:1,自引:2,他引:1 下载免费PDF全文
We studied the synthesis of B-tropic murine leukemia viral DNA in vitro by detergent-disrupted virions. The reaction products (detected by the Southern transfer technique) included full-length, infectious, double-stranded DNA and several subgenomic fragments. Restriction endonuclease analysis and hybridization and specific probes revealed two classes of subgenomic fragments: some were derived from the right end of the genome, and some were derived from the left end. Most of the fragments harbored one long terminal repeat copy at their ends, suggesting that they were initiated correctly. S1 nuclease and restriction endonuclease treatments of these fragments indicated that a single-stranded gap was present near the first initiation site of plus strong-stop DNA. The treatments also suggested the presence of a second initiation site flanked by a single-stranded gap 0.9 kilobase pairs from the right end of the genome. Our data clearly show that plus-strand DNA is synthesized at both ends of the genome, by using plus strong stop as the first initiation site and additional initiation sites. 相似文献
6.
Coupled integration of human immunodeficiency virus type 1 cDNA ends by purified integrase in vitro: stimulation by the viral nucleocapsid protein. 下载免费PDF全文
Integration of retroviral cDNA involves coupled joining of the two ends of the viral genome at precisely spaced positions in the host cell DNA. Correct coupled joining is essential for viral replication, as shown, for example, by the finding that viral mutants defective in coupled joining are defective in integration and replication. To date, reactions with purified human immunodeficiency virus type 1 (HIV-1) integrase protein in vitro have supported mainly uncoupled joining of single cDNA ends. We have analyzed an activity stimulating coupled joining present in HIV-1 virions, which led to the finding that the HIV-1 nucleocapsid (NC) protein can stimulate coupled joining more than 1,000-fold under some conditions. The requirements for stimulating coupled joining were investigated in assays with mutant NC proteins, revealing that mutations in the zinc finger domains can influence stimulation of integration. These findings (i) provide a means for assembling more authentic integrase complexes for mechanistic studies, (ii) reveal a new activity of NC protein in vitro, (iii) indicate a possible role for NC in vivo, and (iv) provide a possible method for identifying a new class of inhibitors that disrupt coupled joining. 相似文献
7.
In vitro initial attachment of HIV-1 integrase to viral ends: control of the DNA specific interaction by the oligomerization state 下载免费PDF全文
Lesbats P Métifiot M Calmels C Baranova S Nevinsky G Andreola ML Parissi V 《Nucleic acids research》2008,36(22):7043-7058
HIV-1 integrase (IN) oligomerization and DNA recognition are crucial steps for the subsequent events of the integration reaction. Recent advances described the involvement of stable intermediary complexes including dimers and tetramers in the in vitro integration processes, but the initial attachment events and IN positioning on viral ends are not clearly understood. In order to determine the role of the different IN oligomeric complexes in these early steps, we performed in vitro functional analysis comparing IN preparations having different oligomerization properties. We demonstrate that in vitro IN concerted integration activity on a long DNA substrate containing both specific viral and nonspecific DNA sequences is highly dependent on binding of preformed dimers to viral ends. In addition, we show that IN monomers bound to nonspecific DNA can also fold into functionally different oligomeric complexes displaying nonspecific double-strand DNA break activity in contrast to the well known single strand cut catalyzed by associated IN. Our results imply that the efficient formation of the active integration complex highly requires the early correct positioning of monomeric integrase or the direct binding of preformed dimers on the viral ends. Taken together the data indicates that IN oligomerization controls both the enzyme specificity and activity. 相似文献
8.
9.
An in vitro integration system derived from avian leukosis virus-infected cells supports both intra- and intermolecular integration of the viral DNA. In the absence of polyethylene glycol, intramolecular integration of viral DNA molecules into themselves (autointegration) was preferred. In the presence of polyethylene glycol, integration into an exogenously supplied DNA target was greatly promoted. Analysis of integration intermediates revealed that the strand transfer mechanisms of both reactions were identical to those of retroviruses and some transposons: each 3' end of the donor molecule is joined to a 5' end of the cleaved target DNA. The immediate integration precursor appears to be linear viral DNA with the 3' ends shortened by 2 nucleotides. Finally, in the avian system, most cytoplasmic viral DNA appears to be incomplete and further DNA synthesis is required for integration in vitro. 相似文献
10.
Concerted integration of viral DNA termini by purified avian myeloblastosis virus integrase. 总被引:3,自引:7,他引:3 下载免费PDF全文
Concerted integration of retroviral DNA termini, which produces a characteristic duplication of sequences at the integration site and formation of the proviral state, is a necessary step of the retroviral life cycle. We investigated the pairwise integration reaction catalyzed by purified avian retrovirus integrase by measuring the response to solution parameters and how the sequences of the viral termini, which comprise the avian imperfect inverted repeat, affect the reaction. When we optimized the reaction, an efficiency was achieved which approached that measured in systems using cytoplasmic extracts from virus-infected cells. The response of purified avian integrase to solution parameters was similar to that of the integration activity derived from cellular extracts. For strand transfer, the U3 viral terminal sequences were preferred to those of the U5 termini, a result we previously showed for the trimming reaction. That the sequence preference was the same for trimming and strand transfer may be further evidence that only one catalytic site is used for both reactions. A significant number of integration sites were sequenced. Interesting trends were found for the fidelity of the host duplications to the avian 6-bp duplication size, the clustering of the integration sites in the nonessential region of the lambda host DNA, and the sequence characteristics of the duplication sites. 相似文献
11.
A mutation at one end of Moloney murine leukemia virus DNA blocks cleavage of both ends by the viral integrase in vivo. 总被引:8,自引:17,他引:8
The integration of retroviral DNA proceeds through two steps: trimming of the termini to expose new 3' OH ends, and the transfer of those ends to the phosphates of target DNA. We have examined the ability of the Moloney murine leukemia virus integrase protein (IN) to trim the termini of the preintegrative DNA of mutant viruses with alterations in the U3 inverted repeat. The mutant terminus of one replication-defective viral DNA, containing a 7-bp deletion in the U3 inverted repeat, was not trimmed to produce the normal recessed end. Remarkably, the other terminus of this mutant DNA was also not trimmed, even though its sequence is wild type. This finding suggests that the IN protein requires the presence of two good ends before becoming properly activated to trim either one. 相似文献
12.
DD(35)E motif in catalytic core domain (CCD) of integrase (IN) is extremely involved in retroviral integration step. Here, nine single residue mutants of feline foamy virus (FFV) IN were generated to study their effects on IN activities and on viral replication. As expected, mutations in the highly conserved D107, D164, and E200 residues abolished all IN catalytic activities (3′-end processing, strand transfer, and disintegration) as well as viral infectivity by blocking viral DNA integration into cellular DNA. However, Q165, Y191, and S195 mutants, which are located closely to DDE motif were observed to have diverse levels of enzymatic activities, compared to those of the wild type IN. Their mutant viruses produced by one-cycle transfection showed different infectivity on their natural host cells. Therefore, it is likely that effects of single residue mutation at DDE motif is critical on viral replication depending on the position of the residues. 相似文献
13.
Genetic evidence that the avian retrovirus DNA endonuclease domain of pol is necessary for viral integration. 总被引:3,自引:15,他引:3 下载免费PDF全文
We used in vitro mutagenesis in the 3' region of the avian retrovirus polymerase (pol) gene to genetically define the role of the DNA endonuclease domain. In-frame insertional mutations, which were dispersed throughout the 5' region of pp32, produced a series of five replication-deficient mutants. In contrast, a single point mutant (Ala----Pro) located 48 amino acids from the NH2 terminus of pp32 exhibited a delayed replication phenotype. Molecular analysis of this mutant demonstrated that upon infection it was capable of synthesizing both linear and circular species of unintegrated viral DNA. The levels of unintegrated viral DNA present in cells infected with the mutant virus were several times greater than wild-type levels. Quantitation of the amount of integrated viral genomes demonstrated that the mutant virus integrated viral DNA one-fifth as efficiently as wild-type virus. This single point mutation in the NH2 terminus of pp32 prevented efficient integration of viral DNA, with no apparent effect on viral DNA synthesis per se. Thus, the DNA endonuclease domain has been genetically defined as necessary for avian retrovirus integration. 相似文献
14.
Ao Z Jayappa KD Wang B Zheng Y Wang X Peng J Yao X 《The Journal of biological chemistry》2012,287(13):10544-10555
HIV-1 integration is promoted by viral integrase (IN) and its cellular cofactors. The lens epithelium-derived growth factor (LEDGF/p75), an IN interacting cellular cofactor, has been shown to play an important role in HIV-1 chromatin targeting and integration. However, whether other cellular cofactors are also involved in viral replication steps is still elusive. Here, we show that nucleoporin 62 (Nup62) is a chromatin-bound protein and can specifically interact with HIV-1 IN in both soluble nuclear extract and chromatin-bound fractions. The knockdown of Nup62 by shRNA reduced the association of IN with host chromatin and significantly impaired viral integration and replication in HIV-1-susceptible cells. Furthermore, the expression of the IN-binding region of Nup62 in CD4(+) T cells significantly inhibited HIV-1 infection. Taken together, these results indicate that the cellular Nup62 is specifically recruited by HIV-1 IN and contribute to an efficient viral DNA integration. 相似文献
15.
Renisio JG Cosquer S Cherrak I El Antri S Mauffret O Fermandjian S 《Nucleic acids research》2005,33(6):1970-1981
The integration of the human immunodeficiency virus type 1 DNA into the host cell genome is catalysed by the viral integrase (IN). The reaction consists of a 3'-processing [dinucleotide released from each 3' end of the viral long terminal repeat (LTR)] followed by a strand transfer (insertion of the viral genome into the human chromosome). A 17 base pair oligonucleotide d(GGAAAATCTCTAGCAGT), d(ACTGCTAGAGATTTTCC) reproducing the U5-LTR extremity of viral DNA that contains the IN attachment site was analysed by NMR using the classical NOEs and scalar coupling constants in conjunction with a small set of residual dipolar coupling constants (RDCs) measured at the 13C/15N natural abundance. The combination of these two types of parameters in calculations significantly improved the DNA structure determination. The well-known features of A-tracts were clearly identified by RDCs in the first part of the molecule. The binding/cleavage site at the viral DNA end is distinguishable by a loss of regular base stacking and a distorted minor groove that can aid its specific recognition by IN. 相似文献
16.
Efficient concerted integration of retrovirus-like DNA in vitro by avian myeloblastosis virus integrase. 总被引:10,自引:0,他引:10 下载免费PDF全文
A C Vora M McCord M L Fitzgerald R B Inman D P Grandgenett 《Nucleic acids research》1994,22(21):4454-4461
We report the efficient concerted integration of a linear virus-like DNA donor into a 2.8 kbp circular DNA target by integrase (IN) purified from avian myeloblastosis virus. The donor was 528 bp, contained recessed 3' OH ends, was 5' end labeled, and had a unique restriction site not found in the target. Analysis of concerted (full-site) and half-site integration events was accomplished by restriction enzyme analysis and agarose gel electrophoresis. The donor also contained the SupF gene that was used for genetic selection of individual full-site recombinants to determine the host duplication size. Two different pathways, involving either one donor or two donor molecules, were used to produce full-site recombinants. About 90% of the full-site recombinants were the result of using two donor molecules per target. These results imply that juxtapositioning an end from each of two donors by IN was more efficient than the juxtapositioning of two ends of a single donor for the full-site reaction. The formation of preintegration complexes containing integrase and donor on ice prior to the addition of target enhanced the full-site reaction. After a 30 min reaction at 37 degrees C, approximately 20-25% of all donor/target recombinants were the result of concerted integration events. The efficient production of full-site recombinants required Mg2+; Mn2+ was only efficient for the production of half-site recombinants. We suggest that these preintegration complexes can be used to investigate the relationships between the 3' OH trimming and strand transfer reactions. 相似文献
17.
Retrovirus preintegration complexes (PIC) in virus-infected cells contain the linear viral DNA genome (approximately 10 kbp), viral proteins including integrase (IN), and cellular proteins. After transport of the PIC into the nucleus, IN catalyzes the concerted insertion of the two viral DNA ends into the host chromosome. This successful insertion process is termed "full-site integration." Reconstitution of nucleoprotein complexes using recombinant human immunodeficiency virus type 1 (HIV-1) IN and model viral DNA donor substrates (approximately 0.30 to 0.48 kbp in length) that are capable of catalyzing efficient full-site integration has proven difficult. Many of the products are half-site integration reactions where either IN inserts only one end of the viral donor substrate into a circular DNA target or into other donors. In this report, we have purified recombinant HIV-1 IN at pH 6.8 in the presence of MgSO4 that performed full-site integration nearly as efficiently as HIV-1 PIC. The size of the viral DNA substrate was significantly increased to 4.1 kbp, thus allowing for the number of viral DNA ends and the concentrations of IN in the reaction mixtures to be decreased by a factor of approximately 10. In a typical reaction at 37 degrees C, recombinant HIV-1 IN at 5 to 10 nM incorporated 30 to 40% of the input DNA donor into full-site integration products. The synthesis of full-site products continued up to approximately 2 h, comparable to incubation times used with HIV-1 PIC. Approximately 5% of the input donor was incorporated into the circular target producing half-site products with no significant quantities of other integration products produced. DNA sequence analysis of the viral DNA-target junctions derived from wild-type U3 and U5 coupled reactions showed an approximately 70% fidelity for the HIV-1 5-bp host site duplications. Recombinant HIV-1 IN successfully utilized a mutant U5 end containing additional nucleotide extensions for full-site integration demonstrating that IN worked properly under nonideal active substrate conditions. The fidelity of the 5-bp host site duplications was also high with these coupled mutant U5 and wild-type U3 donor ends. These studies suggest that recombinant HIV-1 IN is at least as capable as native IN in virus particles and approaching that observed with HIV-1 PIC for catalyzing full-site integration. 相似文献
18.
19.
An essential step in the repair of free radical-mediated DNA strand breaks is the removal of sugar fragments such as phosphoglycolate from the 3' termini. While the abasic endonuclease Ape1 can remove phosphoglycolate from single-strand breaks in double-stranded DNA, an enzyme capable of removing it from 3' overhangs of double-strand breaks has yet to be identified. We therefore tested DNase III, the predominant 3' --> 5' exonuclease in mammalian cell extracts, for possible 3'-phosphoglycolate-removing activity. However, all 3'-phosphoglycolate substrates, as well as a 3'-phosphate substrate, were resistant to DNase III under conditions in which the analogous 3'-hydroxyl substrates were extensively degraded. The DNA end-binding protein Ku (an equimolar mixture of Ku70, now known as G22P1, and Ku86, now known as XRCC5) did not alter the resistance of the 3'-phosphoglycolate substrates, but the protein modulated the susceptibility of 3'-hydroxyl substrates, allowing DNase III to remove a 3' overhang but inhibiting digestion of the double-stranded portion of the substrate. 相似文献
20.
Hayashida K Omagari K Masuda J Kohno S 《Biochemical and biophysical research communications》2008,366(1):206-211
The mechanism of maternal mitochondrial DNA (mtDNA) inheritance in animals can be said to be the selective elimination of sperm mtDNA via the elimination factor of the egg and a sperm mitochondria-specific factor. In 2005, we clarified that t-tpis (Spag1 isoform 1) is a mitochondria-specific translocator and the sperm factor, and furthermore estimated that the elimination factors of the egg are the divalent cation-dependent endonuclease and s-tpis (Spag1 isoform 2 and isoform 3) as the elimination system-specific chaperone [K. Hayashida, K. Omagari, J. Masuda, H. Hazama, Y. Kadokawa, K. Ohba, S. Kohno, The sperm mitochondria-specific translocator has a key role in maternal mitochondrial inheritance, Cell Biol. Int. 29 (2005) 472-481]. This time, using a recombinant Spag1 isoform 1 protein, a pull-down assay of ovary cytosol was performed and the elimination factors searched for. Surprisingly, an endogenous retroviral integrase fragment (Eri15) was identified using mass spectrometry of the electrophoresis band of the pull-down protein. Eri15 was detected as a complex of ∼500 kDa with Spag1 isoform 2 or isoform 3 in native PAGE of the ovary cytosol. This strongly suggested that Eri15 is selectively transported into the sperm mitochondria matrix by Spag1 isoform 2 and 3 via Spag1 isoform 1 and that sperm mtDNA is destroyed, thus causing the establishment of maternal mtDNA inheritance. 相似文献