首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huge body of evidences demonstrated that volatile anesthetics affect the hippocampal neurogenesis and neurocognitive functions, and most of them showed impairment at anesthetic dose. Here, we investigated the effect of low dose (1.8%) sevoflurane on hippocampal neurogenesis and dentate gyrus-dependent learning. Neonatal rats at postnatal day 4 to 6 (P4–6) were treated with 1.8% sevoflurane for 6 hours. Neurogenesis was quantified by bromodeoxyuridine labeling and electrophysiology recording. Four and seven weeks after treatment, the Morris water maze and contextual-fear discrimination learning tests were performed to determine the influence on spatial learning and pattern separation. A 6-hour treatment with 1.8% sevoflurane promoted hippocampal neurogenesis and increased the survival of newborn cells and the proportion of immature granular cells in the dentate gyrus of neonatal rats. Sevoflurane-treated rats performed better during the training days of the Morris water maze test and in contextual-fear discrimination learning test. These results suggest that a subanesthetic dose of sevoflurane promotes hippocampal neurogenesis in neonatal rats and facilitates their performance in dentate gyrus-dependent learning tasks.  相似文献   

2.
Age-related memory loss is considered to commence at middle-age and coincides with reduced adult hippocampal neurogenesis and neurotrophin levels. Consistent physical activity at midlife may preserve brain-derived neurotrophic factor (BDNF) levels, new cell genesis, and learning. In the present study, 9-month-old female C57Bl/6J mice were housed with or without a running wheel and injected with bromodeoxyuridine (BrdU) to label newborn cells. Morris water maze learning, open field activity and rotarod behavior were tested 1 and 6 months after exercise onset. Here we show that long-term running improved retention of spatial memory and modestly enhanced rotarod performance at 15 months of age. Both hippocampal neurogenesis and mature BDNF peptide levels were elevated after long-term running. Thus, regular exercise from the onset and during middle-age may maintain brain function.  相似文献   

3.
Studies using the Morris water maze to assess hippocampal function in animals, in which adult hippocampal neurogenesis had been suppressed, have yielded seemingly contradictory results. Cyclin D2 knockout (Ccnd2?/?) mice, for example, have constitutively suppressed adult hippocampal neurogenesis but had no overt phenotype in the water maze. In other paradigms, however, ablation of adult neurogenesis was associated with specific deficits in the water maze. Therefore, we hypothesized that the neurogenesis‐related phenotype might also become detectable in Ccnd2?/? mice, if we used the exact setup and protocol that in our previous study had revealed deficits in mice with suppressed adult neurogenesis. Ccnd2?/? mice indeed learned the task and developed a normal preference for the goal quadrant, but were significantly less precise for the exact goal position and were slower in acquiring efficient and spatially more precise search strategies. Upon goal reversal (when the hidden platform was moved to a new position) Ccnd2?/? mice showed increased perseverance at the former platform location, implying that they were less flexible in updating the previously learned information. Both with respect to adult neurogenesis and behavioral performance, Ccnd2+/? mice ranged between wild types and knockouts. Importantly, hippocampus‐dependent learning was not generally impaired by the mutation, but specifically functional aspects relying on precise and flexible encoding were affected. Whether ablation of adult neurogenesis causes a specific behavioral phenotype thus also depends on the actual task demands. The test parameters appear to be important variables influencing whether a task can pick up a contribution of adult neurogenesis to test performance.  相似文献   

4.
目的探讨胎次、性别是否对成年小鼠海马齿状回神经发生及学习记忆产生影响。方法运用Morris水迷宫系统检测第1~3胎成年小鼠的学习记忆能力,腹腔注射BrdU,标记神经干细胞,检测不同胎次、性别小鼠海马齿状回中的神经发生的差异。结果 (1)在同性别、不同胎次成年小鼠间,第2胎的学习记忆能力(LMA)均显著地高于第1、3胎的,其影响规律为LMA2〉LMA1〉LMA3,且P〈0.05;在同胎次、不同性别成年小鼠间,雌性小鼠的LMA均高于雄性小鼠的,但其差异无显著性(P〉0.05)。(2)在同性别、不同胎次成年小鼠间,第2胎海马DG新生神经细胞的数量(N)均高于第1、3胎的,其影响规律分别为NF2〉NF3〉NF1和NM2〉NM1〉NM3,但其差异无显著性(P〉0.05);在同胎次、不同性别成年小鼠间,雌性小鼠的N均高于雄性小鼠的,但其差异无显著性(P〉0.05)。结论胎次、性别对实验动物神经发生及学习记忆等方面产生的影响是肯定的。因此,在使用实验动物时,应予以充分考虑,尽量使用胎次、性别相同的。  相似文献   

5.
Despite enormous progress in the past few years the specific contribution of newly born granule cells to the function of the adult hippocampus is still not clear. We hypothesized that in order to solve this question particular attention has to be paid to the specific design, the analysis, and the interpretation of the learning test to be used. We thus designed a behavioral experiment along hypotheses derived from a computational model predicting that new neurons might be particularly relevant for learning conditions, in which novel aspects arise in familiar situations, thus putting high demands on the qualitative aspects of (re-)learning.In the reference memory version of the water maze task suppression of adult neurogenesis with temozolomide (TMZ) caused a highly specific learning deficit. Mice were tested in the hidden platform version of the Morris water maze (6 trials per day for 5 days with a reversal of the platform location on day 4). Testing was done at 4 weeks after the end of four cycles of treatment to minimize the number of potentially recruitable new neurons at the time of testing. The reduction of neurogenesis did not alter longterm potentiation in CA3 and the dentate gyrus but abolished the part of dentate gyrus LTP that is attributed to the new neurons. TMZ did not have any overt side effects at the time of testing, and both treated mice and controls learned to find the hidden platform. Qualitative analysis of search strategies, however, revealed that treated mice did not advance to spatially precise search strategies, in particular when learning a changed goal position (reversal). New neurons in the dentate gyrus thus seem to be necessary for adding flexibility to some hippocampus-dependent qualitative parameters of learning.Our finding that a lack of adult-generated granule cells specifically results in the animal''s inability to precisely locate a hidden goal is also in accordance with a specialized role of the dentate gyrus in generating a metric rather than just a configurational map of the environment. The discovery of highly specific behavioral deficits as consequence of a suppression of adult hippocampal neurogenesis thus allows to link cellular hippocampal plasticity to well-defined hypotheses from theoretical models.  相似文献   

6.
Exposure to exercise or to environmental enrichment increases the generation of new neurons in the adult hippocampus and promotes certain kinds of learning and memory. While the precise role of neurogenesis in cognition has been debated intensely, comparatively few studies have addressed the mechanisms linking environmental exposures to cellular and behavioral outcomes. Here we show that bone morphogenetic protein (BMP) signaling mediates the effects of exercise on neurogenesis and cognition in the adult hippocampus. Elective exercise reduces levels of hippocampal BMP signaling before and during its promotion of neurogenesis and learning. Transgenic mice with decreased BMP signaling or wild type mice infused with a BMP inhibitor both exhibit remarkable gains in hippocampal cognitive performance and neurogenesis, mirroring the effects of exercise. Conversely, transgenic mice with increased BMP signaling have diminished hippocampal neurogenesis and impaired cognition. Exercise exposure does not rescue these deficits, suggesting that reduced BMP signaling is required for environmental effects on neurogenesis and learning. Together, these observations show that BMP signaling is a fundamental mechanism linking environmental exposure with changes in cognitive function and cellular properties in the hippocampus.  相似文献   

7.

A common feature of neurodegenerative disorders, in particular Alzheimer's disease (AD), is a chronic neuroinflammation associated with aberrant neuroplasticity. Development of neuroinflammation affects efficacy of stem and progenitor cells proliferation, differentiation, migration, and integration of newborn cells into neural circuitry. However, precise mechanisms of neurogenesis alterations in neuroinflammation are not clear yet. It is well established that expression of NLRP3 inflammasomes in glial cells marks neuroinflammatory events, but less is known about contribution of NLRP3 to deregulation of neurogenesis within neurogenic niches and whether neural stem cells (NSCs), neural progenitor cells (NPCs) or immature neuroblasts may express inflammasomes in (patho)physiological conditions. Thus, we studied alterations of neurogenesis in rats with the AD model (intra-hippocampal injection of Aβ1-42). We found that in Aβ-affected brain, number of CD133+ cells was elevated after spatial training in the Morris water maze. The number of PSA-NCAM+ neuroblasts diminished by Aβ injection was completely restored by subsequent spatial learning. Spatial training leads to elevated expression of NLRP3 inflammasomes in the SGZ (subgranular zones): CD133+ and PSA-NCAM+ cells started to express NLRP3 in sham-operated, but not AD rats. Taken together, our data suggest that expression of NLRP3 inflammasomes in CD133+ and PSA-NCAM+ cells may contribute to stimulation of adult neurogenesis in physiological conditions, whereas Alzheimer’s type neurodegeneration abolishes stimuli-induced overexpression of NLRP3 within the SGZ neurogenic niche.

  相似文献   

8.
9.
Neurogenesis in a rat model of age-related cognitive decline   总被引:5,自引:0,他引:5  
Bizon JL  Lee HJ  Gallagher M 《Aging cell》2004,3(4):227-234
Age-related decrements in hippocampal neurogenesis have been suggested as a basis for learning impairment during aging. In the current study, a rodent model of age-related cognitive decline was used to evaluate neurogenesis in relation to hippocampal function. New hippocampal cell survival was assessed approximately 1 month after a series of intraperitoneal injections of 5-bromo-2'-deoxyuridine (BrdU). Correlational analyses between individual measures of BrdU-positive cells and performance on the Morris water maze task provided no indication that this measure of neurogenesis was more preserved in aged rats with intact cognitive abilities. On the contrary, among aged rats, higher numbers of BrdU-positive cells in the granule cell layer were associated with a greater degree of impairment on the learning task. Double-labelling studies confirmed that the majority of the BrdU+ cells were of the neuronal phenotype; the proportion of differentiated neurons was not different across a broad range of cognitive abilities. These data demonstrate that aged rats that maintain cognitive function do so despite pronounced reductions in hippocampal neurogenesis. In addition, these findings suggest the interesting possibility that impaired hippocampal function is associated with greater survival of newly generated hippocampal neurons at advanced ages.  相似文献   

10.
Prenatal irradiation is known to have aversive effects on the brain development, manifested in changes in some behavioural parameters in adult individuals. The aim of our work was to assess the effect of prenatal irradiation on different forms of behaviour and on hippocampal neurogenesis in rats. Pregnant female rats were irradiated with a dose of 1 Gy of gamma rays on the 16th day of gravidity. The progeny of irradiated and control animals aged 3 months were tested in Morris water maze (MWM), open field (OF) and in elevated plus maze test (PM). The prenatal irradiation negatively influenced the short-term spatial memory in MWM in female rats, although the long-term memory was not impaired. A statistically significant increase of basic locomotor activity in OF was observed in irradiated rats. The comfort behaviour was not altered. The results of PM showed an increase of anxiety in irradiated females. The level of hippocampal neurogenesis, assessed as the number of cells labelled with 5-bromo-2-deoxyuridine in the area of gyrus dentatus, was not statistically different in irradiated rats. Our results indicate, that prenatal irradiation with a low dose of gamma-rays can affect some innate and learned forms of behaviour in adult rats. We did not confirm a relation of behavioural changes to the changes of hippocampal neurogenesis.  相似文献   

11.
High doses of estradiol (E(2)) can impair spatial learning in the Morris water maze, in ovariectomized mice, but the same dose has no effect on adult castrated males. Here, we test the hypothesis that this sex difference is caused by neonatal actions of E(2). In Experiment 1, C57BL/6J pups were given daily estradiol benzoate (EB) or oil injections from the day of birth until postnatal Day 3. Adults were gonadectomized and received EB (s.c.) or oil 28 h before the first day of training, and 4 h before each of four daily training sessions on the Morris water maze. Females given oil as neonates, and EB prior to training displayed the poorest performance. Females that received EB as neonates and EB prior to training were insensitive to the deleterious effects of adult EB and performed better than males given the same hormone treatments. We conducted a second experiment using aromatase enzyme knockout (ArKO) mice. Adult male and female ArKO and wild-type (WT) littermates were gonadectomized and received either injections of oil or EB prior to and during water maze training (as described above). Hormone treatment failed to affect performance, yet, female but not male ArKO mice showed impaired learning compared to WT littermates. Thus, exposure to estradiol during neonatal development can counteract the deleterious effects of EB on adult spatial learning.  相似文献   

12.
The developing brain is particularly sensitive to exposures to environmental contaminants. In contrast to the adult, the developing brain contains large numbers of dividing neuronal precursors, suggesting that they may be vulnerable targets. The postnatal day 7 (P7) rat hippocampus has populations of both mature neurons in the CA1–3 region as well as neural stem cells (NSC) in the dentate gyrus (DG) hilus, which actively produce new neurons that migrate to the granule cell layer (GCL). Using this well‐characterized NSC population, we examined the impact of low levels of methylmercury (MeHg) on proliferation, neurogenesis, and subsequent adolescent learning and memory behavior. Assessing a range of exposures, we found that a single subcutaneous injection of 0.6 µg/g MeHg in P7 rats induced caspase activation in proliferating NSC of the hilus and GCL. This acute NSC death had lasting impact on the DG at P21, reducing cell numbers in the hilus by 22% and the GCL by 27%, as well as reductions in neural precursor proliferation by 25%. In contrast, non‐proliferative CA1–3 pyramidal neuron cell number was unchanged. Furthermore, animals exposed to P7 MeHg exhibited an adolescent spatial memory deficit as assessed by Morris water maze. These results suggest that environmentally relevant levels of MeHg exposure may decrease NSC populations and, despite ongoing neurogenesis, the brain may not restore the hippocampal cell deficits, which may contribute to hippocampal‐dependent memory deficits during adolescence. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 936–949, 2013  相似文献   

13.
Cellular polarity is crucial for brain development and morphogenesis. Lethal giant larvae 1 (Lgl1) plays a crucial role in the establishment of cell polarity from Drosophila to mammalian cells. Previous studies have found the importance of Lgl1 in the development of cerebellar, olfactory bulb, and cerebral cortex. However, the role of Lgl1 in hippocampal development during the embryonic stage and function in adult mice is still unknown. In our study, we created Lgl1‐deficient hippocampus mice by using Emx1‐Cre mice. Histological analysis showed that the Emx1‐Lgl1?/? mice exhibited reduced size of the hippocampus with severe malformations of hippocampal cytoarchitecture. These defects mainly originated from the disrupted hippocampal neuroepithelium, including increased cell proliferation, abnormal interkinetic nuclear migration, reduced differentiation, increased apoptosis, gradual disruption of adherens junctions, and abnormal neuronal migration. The radial glial scaffold was disorganized in the Lgl1‐deficient hippocampus. Thus, Lgl1 plays a distinct role in hippocampal neurogenesis. In addition, the Emx1‐Lgl1?/? mice displayed impaired behavioral performance in the Morris water maze and fear conditioning test.  相似文献   

14.
New neurons are continuously generated in hippocampal subgranular zone throughout life, and the amount of neurogenesis is suggested to be correlated with the hippocampus-dependent function. Several extrinsic stimuli are known to modulate the neurogenesis process. Among them, physical exercise has advantageous effects on neurogenesis and brain function, while inflammation shows the opposite. Herein we showed that a moderate running exercise successfully restored the peripheral lipopolysaccharide (LPS)-impaired neurogenesis in the dentate area. LPS treatment obstructed neuronal differentiation, but not proliferation. Exercise training facilitated both the proliferation of the neural stem cells and their differentiation into neurons. Interestingly, exercise replenished the LPS-reduced levels of brain-derived neurotrophic factor and its receptor, TrkB, and rescued the LPS-disturbed performance in water maze; while the LPS-elicited up-regulation of tumor necrosis factor-alpha and interleukin-1β remained unaltered. In conclusion, our findings suggest that running exercise effectively ameliorates the LPS-disturbed hippocampal neurogenesis and learning and memory performance. Such advantageous effects of running exercise are not due to the alteration of inflammatory response, but possibly by the restoring the LPS-lessened brain-derived neurotrophic factor signaling pathway.  相似文献   

15.
BALB/c和ICR小鼠的学习记忆能力等行为学研究   总被引:1,自引:0,他引:1  
目的研究不同品系小鼠学习记忆能力的差异,为学习记忆的基础研究提供应用信息。方法80只BALB/c和80只ICR小鼠分别分为Morris水迷宫组、跳台组、穿梭组、ROTA-ROD组,每组20例,进行学习记忆能力及行动能力测试。结果水迷宫组在9轮水迷宫训练学习期BALB/c小鼠空间学习记忆能力没有明显提高。ICR小鼠从9轮水迷宫训练学习期的第4次开始,逃避潜伏期显著缩短,与前3次相比差异有显著性(P<0.001)。跳台组ICR和BALB/c小鼠训练前后5 min内错误次数及跳下潜伏期差异均具有显著性。穿梭组ICR小鼠学习期与记忆期主动逃避次数、被动逃避次数及电击时间的差异均有显著性,而BALB/c小鼠训练前后主动逃避次数、被动逃避次数及电击时间的差异均无显著性。ROTA-ROD组ICR小鼠的跑步动作维持时间显著高于BALB/c小鼠,其差异有显著性。结论以上结果提示在进行某些学习记忆实验时,使用ICR小鼠优于BALB/c小鼠。  相似文献   

16.
Calcineurin is a calcium-dependent protein phosphatase that has been implicated in various aspects of synaptic plasticity. By using conditional gene-targeting techniques, we created mice in which calcineurin activity is disrupted specifically in the adult forebrain. At hippocampal Schaffer collateral-CA1 synapses, LTD was significantly diminished, and there was a significant shift in the LTD/LTP modification threshold in mutant mice. Strikingly, although performance was normal in hippocampus-dependent reference memory tasks, including contextual fear conditioning and the Morris water maze, the mutant mice were impaired in hippocampus-dependent working and episodic-like memory tasks, including the delayed matching-to-place task and the radial maze task. Our results define a critical role for calcineurin in bidirectional synaptic plasticity and suggest a novel mechanistic distinction between working/episodic-like memory and reference memory.  相似文献   

17.
Polysialylation is a post-translational modification of the neural cell adhesion molecule (NCAM), which in the adult brain promotes structural changes in regions of neurogenesis and neuroplasticity. Because a variety of plastic changes including neurogenesis have been suggested to be functionally involved in the pathophysiology of epilepsies, it is of specific interest to define the impact of the polysialic acid (PSA)-NCAM system on development of this disease and associated comorbidities. Therefore, we studied the impact of transient enzymatic depolysialylation of NCAM on the pathophysiology in an electrically induced rat post-status epilepticus (SE) model. Loss of PSA counteracted the SE-induced increase in neurogenesis in a significant manner. This effect of endoneuraminidase (endoN) treatment on hippocampal neurogenesis did not impact the subsequent development of spontaneous seizures. In contrast, transient lack of PSA during SE and in the early phase of epileptogenesis exhibited a cognition sparing effect as revealed in the Morris water maze paradigm. In conclusion, our data do not support a central role of neurogenesis in the development of a hyperexcitable epileptic network. However, in view of the cognition-sparing effect, the transient modulation of the PSA-NCAM system seems to allow beneficial long-term disease modification, which might be mediated by the partial normalization of neurogenesis.  相似文献   

18.
The function of adult neurogenesis in the rodent brain remains unclear. Ablation of adult born neurons has yielded conflicting results about emotional and cognitive impairments. One hypothesis is that adult neurogenesis in the hippocampus enables spatial pattern separation, allowing animals to distinguish between similar stimuli. We investigated whether spatial pattern separation and other putative hippocampal functions of adult neurogenesis were altered in a novel genetic model of neurogenesis ablation in the rat. In rats engineered to express thymidine kinase (TK) from a promoter of the rat glial fibrillary acidic protein (GFAP), ganciclovir treatment reduced new neurons by 98%. GFAP-TK rats showed no significant difference from controls in spatial pattern separation on the radial maze, spatial learning in the water maze, contextual or cued fear conditioning. Meta-analysis of all published studies found no significant effects for ablation of adult neurogenesis on spatial memory, cue conditioning or ethological measures of anxiety. An effect on contextual freezing was significant at a threshold of 5% (P = 0.04), but not at a threshold corrected for multiple testing. The meta-analysis revealed remarkably high levels of heterogeneity among studies of hippocampal function. The source of this heterogeneity remains unclear and poses a challenge for studies of the function of adult neurogenesis.  相似文献   

19.
20.
Protein tyrosine phosphatase delta (PTPdelta) is a receptor-type PTP expressed in the specialized regions of the brain including the hippocampal CA2 and CA3, B lymphocytes and thymic medulla. To elucidate the physiological roles of PTPdelta, PTPdelta-deficient mice were produced by gene targeting. It was found that PTPdelta-deficient mice were semi-lethal due to insufficient food intake. They also exhibited learning impairment in the Morris water maze, reinforced T-maze and radial arm maze tasks. Interestingly, although the histology of the hippocampus appeared normal, the magnitudes of long-term potentiation (LTP) induced at hippocampal CA1 and CA3 synapses were significantly enhanced in PTPdelta-deficient mice, with augmented paired-pulse facilitation in the CA1 region. Thus, it was shown that PTPdelta plays important roles in regulating hippocampal LTP and learning processes, and that hippocampal LTP does not necessarily positively correlate with spatial learning ability. To our knowledge, this is the first report of a specific PTP involved in the regulation of synaptic plasticity or in the processes regulating learning and memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号