首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Bleomycin is an important anti-tumor agent which works primarily through it's degradation of DNA template. Using synthetic single (poly[dA]-oligo-[dT]) and double stranded (poly[dA-dT]) templates, we noted significant inhibition when the BLM resistant homopolymer was used. Furthermore, when each of the components of the DNA polymerase assay were treated with bleomycin separately, followed by removal of bleomycin, significant inhibition (35%) of the enzyme was observed. The limited inhibition of DNA polymerase by BLM was attributed to residual activity of the enzyme-inhibitor complex.  相似文献   

4.
Bleomycin, an antibiotic and antineoplastic drug that inhibits DNA synthesis and causes several types of chromosomal aberration, was found to increase mitotic recombination in Aspergillus nidulans. Heterozygous prototrophic diploid strains grown on media containing bleomycin produced significant increases of yellow and white sectors compared with controls. Further, the increased colour segregants were due to mitotic crossing-over, whereas the non-dis junctional segregants remained at the control level. Bleomycin also induced point mutations in the methionine-suppressor system of the methGl biAl strain of Aspergillus nidulans. Conidia treated in suspension with various concentrations of bleomycin increased the methionine-independent mutants 30-fold and more.  相似文献   

5.
Live cells contain high concentrations of macromolecules, but almost all experimental biochemical data have been generated from dilute solutions that do not reflect conditions in vivo. To understand biomolecular behavior in vivo, properties studied in vitro are extrapolated to conditions in vivo; however, the molecular conditions within live cells are inherently crowded. The present study investigates the effect of molecular crowding on DNA polymerase activity using polyethylene glycol PEG of various molecular weights as a crowding agent. Polymerase activity assays under various conditions demonstrated that the activities of T7 and Taq DNA polymerases depend on the molecular weight and concentration of the crowding agent. Furthermore, equilibrium and kinetic analyses demonstrated that the binding affinity and catalytic activity of the polymerase increase and decrease, respectively, with increasing PEG concentrations. Based on quantitative parameters of the polymerase reactions, we improved the efficiency of PCR amplification under conditions of molecular crowding. These results suggest that quantitative measurements of biomolecular structure and function are useful for understanding the behavior of biomolecules in vivo and for biotechnology applications in vitro.  相似文献   

6.
Effect of polyamines on the activity of malarial alpha-like DNA polymerase   总被引:1,自引:0,他引:1  
DNA polymerase from the malarial parasite Plasmodium falciparum required Mg2+ for activity, Putrescine (1 mM) caused a twofold increase in enzyme activity in the presence of a suboptimal concentration of MgCl2 (2 mM). Spermidine (1.5-2.0 mM) or spermine (0.1-0.3 mM) increased the activity of malarial DNA polymerase, in the presence of 2 mM MgCl2, by factors of 6 and 3-5, respectively. The activity of DNA polymerase from calf thymus or from NIH 3T3 cells transformed by the ras oncogene were not stimulated by these polyamines to the same extent. These findings suggest that in malaria-infected erythrocytes, polyamines, at physiological concentrations, serve as a cofactor for the parasitic alpha-like DNA polymerase. Malarial parasites grown in cultured human erythrocytes did not synthesize DNA after treatment with alpha-difluoromethylornithine, which caused polyamine depletion in the infected cells. DNA synthesis was resumed after adding putrescine to the polyamine-depleted cultures. DNA synthesis was also initiated when actinomycin D was added along with putrescine to polyamine-depleted cells. It thus appears that polyamines are essential for the translation of the DNA polymerase mRNA and that polyamines play an important role in regulating the cell cycle of the malarial parasite.  相似文献   

7.
A series of novel amino acid and peptide derivatives of bleomycin (BLM) A(5) were synthesized. All the compounds possessed significant antitumor activities in vitro against HL-60, BGC-823, PC-3MIE8, and MDA-MB-435 cell lines. Their antitumor activities against MDA-MB-435 were 10-fold higher than BLM A5. The DNA cleavage studies indicated that the hydrophobic amino acid or peptide derivatives of BLM A5 could induce higher cleavage ratio of double to single strand DNA than BLM A5. From the DNA binding studies, we found that the derivatives containing either D-conformation amino acid or basic amino acid could facilitate DNA binding of BLM.  相似文献   

8.
At a concentration of 0.5 to 3 mmol/L, ATP stimulates the activity of mitochondrial DNA polymerase ofNeurospora crassa under the optimum reaction conditions; at higher concentrations, an inhibitory effect is observed. 4-Chloromercuribenzoate (1 mmol/L), a thiol inhibitor, decreases the enzyme activity two-fold, while N-ethylmaleimide (2 mmol/L) has no effect. Ethidium bromide (up to 10 μmol/L) and heparin (up to 0.4 μg/mL) reduce the activity by 60%. ddTTP does not affect the DNA polymerase reaction. The bestin vitro template is the activated calf-thymus DNA. 2nd report of the series Mitochondrial DNA polymerase from the poky mutant ofNeurospora crassa; 1st report:Biológia (Bratislava) 45, 601–606 (1990). Translated by Č. Novotny  相似文献   

9.
10.
DNA strand scission by the novel antitumor antibiotic leinamycin   总被引:1,自引:0,他引:1  
M Hara  Y Saitoh  H Nakano 《Biochemistry》1990,29(24):5676-5681
Leinamycin is a recently discovered antitumor antibiotic with an unusual 1,3-dioxo-1,2-dithiolane structure. It preferentially inhibits the incorporation of [3H]thymidine into the acid-insoluble fraction of Bacillus subtilis. In vitro, leinamycin causes single-strand cleavage of supercoiled double-helical pBR322 DNA in the presence of thiol cofactors. Scavengers of oxygen radical did not supress the DNA-cleaving activity. Thiol-activated leinamycin binds calf thymus DNA at 4 degrees C and thermal treatment of the leinamycin-DNA adduct released a chemically modified leinamycin from the complex. The lack of cytotoxicity and DNA-cleaving activity for S-deoxyleinamycin indicates that the 1,3-dioxo-1,2-dithiolane moiety is essential for the activity of leinamycin. Thus, the primary cellular target of leinamycin appears to be DNA. It binds DNA and causes single-strand break at low concentrations, which may account for the potent antitumor activity.  相似文献   

11.
12.
Neocarzinostatin (NCS), an antitumor protein antibiotic that causes strand scissions of DNA both in vitro and in vivo, is shown to lower the template activity of DNA for DNA polymerase Iin vitro. There is a correlation between the extent of strand scission and the degree of inhibition, maximal inhibition of the polymerase reaction being obtained under conditions promoting maximal strand scission. These effects can be related to the concentrations of NCS and of 2-mercaptoethanol and are maximized by pretreatment of the DNA with drug. Results from polymerase assays in which the amount of drug-treated DNA template was varied at a constant level of the enzyme suggest that the sites associated with NCS-induced breaks are nonfunctional in DNA synthesis but bind DNA polymerase I. The binding of the enzyme to the inactive sites is further confirmed using [203 Hg] polymerase. It is shown that the lowering of the template activity of DNA by NCS under conditions of strand scission is due to the generation of a large number of inactive sites that block, competitively, the binding of DNA polymerase to the active sites on the template. Furthermore, the inhibition of DNA synthesis, which depends on the extent of strand breakage and on the relative amounts of template and enzyme, can be reversed by increasing the levels of template or polymerase. The finding that DNA synthesis directed by poly [d(A-T)] is much more sensitive to NCS than that primed by poly [d(G-C)] suggests that the drug preferentially interacts at regions containing adenine and/or thymine residues.  相似文献   

13.
Significant changes in the nucleus structure, complete suppression of the mitotic activity, markedly decreased synthesis of RNA (by 70--80 per cent according to incorporation of 3H-uridine) and decreased levels of DNA (by 40 per cent according to olivomycin binding) were observed in the fibroblasts cultivated in vitro due to exposure to actinoxanthine in an amount of 50 microgram/ml. The data indicate direct damaging effect of the drug on the cell chromatin. The above nuclear changes were also observed after a short-term exposure of the cells to the drug (up to 5 minutes). Still, they became evident only after the subsequent incubation of the cells in a pure culture medium for at least 15 minutes. No such changes in the nucleus structure were detected when after the 5-minute exposure to actinoxanthine the cells were exposed to trypsin for 3 minutes. When the time of exposure to actinoxanthine was longer (15 minutes and higher), trypsin suppressed the manifestation of the above nuclear changes. The two-stage mechanism of the damaging effect of actinoxanthine on the chromatin of the cells cultivated in vitro is discussed. The damaging effect of actinoxanthine on the cells begins from binding of the drug with the cell membrane. After that a short incubation period follows and then the characteristic changes in the nucleus structure appear.  相似文献   

14.
15.
Toromycin, an antitumor, bactericidal and antiviral compound, was found to bind to DNA in such a way as to interfere with the dissociation of double helix at an elevated temperature. The antibiotic did not introduce strand scission into DNA. Single-strand-specific nuclease S1-susceptibility of negatively supercoiled DNA was not influenced by its binding. The antibiotic was shown to bind to both of the alternating purine-pyrimidine copolymers, poly(dG-dC):poly(dG-dC) and poly(dA-dT):poly(dA-dT). The unique C-glycoside molecule of toromycin interacted with single-stranded DNA, but was found to have no affinity for RNA.  相似文献   

16.
Esperamicin A1 is a DNA-damaging agent characterized by a unique ten-membered ene-diyne core. We studied the detailed reaction mechanism by using synthetic DNA oligomers. The cleavage site and activity depend on the sequence of the oligomers. d(GGATCC) and d(GGTACC) were cleaved by the drug while d(CCATGG) and d(CCTAGG) were not cleaved under the present conditions. d(GGTACC) gave two major 5'-fragments. The result of partial nuclease digestion experiments suggests that these products are trimer and pentamer with a modified 3'-end.  相似文献   

17.
The paper reports on the influence of polymerizing activity of DNA-polymerase I on different developmental stages of temperate bacteriophage Mu in Escherichia coli K-12 cells. This activity is shown to be necessary for optimization of phage Mu primary integration into cell chromosomes. The relative frequency of Mu integration into bacterial chromosomes is 5-6 times lower in polA cells than in isogenic polA+ control strains, the phage yield from cells being delayed during the phage infectious development, but not in the course of induction from the prophage state. Data have been obtained that show the process of phage Mu DNA integration into the plasmid pRP1 .2 and the process of Mu transposition from the cell chromosome into the plasmid to be independent of the polymerizing activity of DNA-polymerase I.  相似文献   

18.
19.
DNA polymerases are essential enzymes responsible for replication and repair of DNA in all organisms. To replicate DNA with high fidelity, DNA polymerases must select the correct incoming nucleotide substrate during each cycle of nucleotide incorporation, in accordance with the templating base. When an incorrect nucleotide is sometimes inserted, the polymerase uses a separate 3'→5' exonuclease to remove the misincorporated base (proofreading). Large conformational rearrangements of the polymerase-DNA complex occur during both the nucleotide incorporation and proofreading steps. Single-molecule fluorescence spectroscopy provides a unique tool for observation of these dynamic conformational changes in real-time, without the need to synchronize a population of DNA-protein complexes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号