首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Stephens OM  Yi-Brunozzi HY  Beal PA 《Biochemistry》2000,39(40):12243-12251
ADARs are adenosine deaminases responsible for RNA editing reactions that occur in eukaryotic pre-mRNAs, including the pre-mRNAs of glutamate and serotonin receptors. Here we describe the generation and analysis of synthetic ADAR2 substrates that differ in structure around an RNA editing site. We find that five base pairs of duplex secondary structure 5' to the editing site increase the single turnover rate constant for deamination 17-39-fold when compared to substrates lacking this structure. ADAR2 deaminates an adenosine in the sequence context of a natural editing site >90-fold more rapidly and to a higher yield than an adjacent adenosine in the same RNA structure. This reactivity is minimally dependent on the base pairing partner of the edited nucleotide; adenosine at the editing site in the naturally occurring A.C mismatch is deaminated to approximately the same extent and only 4 times faster than adenosine in an A.U base pair at this site. A steady-state rate analysis at a saturating concentration of the most rapidly processed substrate indicates that product formation is linear with time through at least three turnovers with a slope of 13 +/- 1.5 nM.min(-1) at 30 nM ADAR2 for a k(ss) = 0.43 +/- 0.05 min(-1). In addition, ADAR2 induces a 3.3-fold enhancement in fluorescence intensity and a 14 nm blue shift in the emission maximum of a duplex substrate with 2-aminopurine located at the editing site, consistent with a mechanism whereby ADAR2 flips the reactive nucleotide out of the double helix prior to deamination.  相似文献   

3.
We sought to examine ADAR-1 editing of measles and influenza virus genomes derived from inactivated seasonal influenza and live attenuated measles virus vaccines grown on chicken cells as the culture substrate. Using highly sensitive 3DI-PCR (R. Suspène et al., Nucleic Acids Res. 36:e72, 2008), it was possible to show that ADAR-1 could hyperdeaminate adenosine residues in both measles virus and influenza virus A genomes. Detailed analysis of the dinucleotide editing context showed preferences for 5'ArA and 5'UrA, which is typical of editing in mammalian cells. The hyperedited mutant frequency, including genomes and antigenomes, was a log greater for influenza virus compared to measles virus, suggesting a greater sensitivity to restriction by ADAR-1.  相似文献   

4.
The RNA-editing adenosine deaminases (ADARs) catalyze deamination of adenosine to inosine in double stranded structure found in various RNA substrates, including mRNAs. Here we describe the synthesis of a phosphoramidite of 2 ′-deoxy-2 ′-mercaptoadenosine and its incorporation into an ADAR substrate. Surprisingly, no deamination product was observed with this substrate indicating replacing the 2 ′-OH with a 2 ′-SH at the editing site is highly inhibitory. Modeling of nucleotide binding into the active site suggests the side chain of T375 of human ADAR2 to be in proximity of the 2 ′-substituent. Mutation of this residue to cysteine caused a greater that 100-fold reduction in deamination rate with the 2 ′-OH substrate.  相似文献   

5.
ADAR enzymes, adenosine deaminases that act on RNA, form a family of RNA editing enzymes that convert adenosine to inosine within RNA that is completely or largely double-stranded. Site-selective A→I editing has been detected at specific sites within a few structured pre-mRNAs of metazoans. We have analyzed the editing selectivity of ADAR enzymes and have chosen to study the naturally edited R/G site in the pre-mRNA of the glutamate receptor subunit B (GluR-B). A comparison of editing by ADAR1 and ADAR2 revealed differences in the specificity of editing. Our results show that ADAR2 selectively edits the R/G site, while ADAR1 edits more promiscuously at several other adenosines in the double-stranded stem. To further understand the mechanism of selective ADAR2 editing we have investigated the importance of internal loops in the RNA substrate. We have found that the immediate structure surrounding the editing site is important. A purine opposite to the editing site has a negative effect on both selectivity and efficiency of editing. More distant internal loops in the substrate were found to have minor effects on site selectivity, while efficiency of editing was found to be influenced. Finally, changes in the RNA structure that affected editing did not alter the binding abilities of ADAR2. Overall these findings suggest that binding and catalysis are independent events.  相似文献   

6.
Double-stranded RNA (dsRNA) adenosine deaminase (dsRAD) converts adenosines to inosines within dsRNA. A great deal of evidence suggests that dsRAD or a related enzyme edits mammalian glutamate receptor mRNA in vivo. Here we map the deamination sites that occur in a truncated glutamate receptor-B (gluR-B) mRNA after incubation with pure Xenopus dsRAD. We find remarkable similarities, as well as distinct differences, between the observed deamination sites and the sites reported to be edited within RNAs isolated from mammalian brain. For example, although deamination at the biologically relevant Q/R editing site occurs, it occurs much less frequently than editing at this site in vivo. We hypothesize that the similarities between the deamination and editing patterns exist because the deamination specificity that is intrinsic to dsRAD is involved in selecting editing sites in vivo. We propose that the observed differences are due to the absence of accessory factors that play indirect roles in vivo, such as binding to and occluding certain sites from dsRAD, or promoting the RNA structure required for correct and efficient editing. The work reported here also suggests that dsRAD is capable of much more selectivity than previously thought; a minimal number of deamination sites (average < or = 5) were found in each gluR-B RNA. We speculate that the observed selectivity is due to the various structural elements (mismatches, bulges, loops) that periodically interrupt the base paired region required for editing.  相似文献   

7.
8.
Adenosine deaminases that act on RNA (ADAR) catalyze adenosine to inosine (A-to-I) editing in double-stranded RNA (dsRNA) substrates. Inosine is read as guanosine by the translation machinery; therefore A-to-I editing events in coding sequences may result in recoding genetic information. Whereas vertebrates have two catalytically active enzymes, namely ADAR1 and ADAR2, Drosophila has a single ADAR protein (dADAR) related to ADAR2. The structural determinants controlling substrate recognition and editing of a specific adenosine within dsRNA substrates are only partially understood. Here, we report the solution structure of the N-terminal dsRNA binding domain (dsRBD) of dADAR and use NMR chemical shift perturbations to identify the protein surface involved in RNA binding. Additionally, we show that Drosophila ADAR edits the R/G site in the mammalian GluR-2 pre-mRNA which is naturally modified by both ADAR1 and ADAR2. We then constructed a model showing how dADAR dsRBD1 binds to the GluR-2 R/G stem-loop. This model revealed that most side chains interacting with the RNA sugar-phosphate backbone need only small displacement to adapt for dsRNA binding and are thus ready to bind to their dsRNA target. It also predicts that dADAR dsRBD1 would bind to dsRNA with less sequence specificity than dsRBDs of ADAR2. Altogether, this study gives new insights into dsRNA substrate recognition by Drosophila ADAR.  相似文献   

9.
Adenosine deaminases acting on RNA (ADAR1 and ADAR2) are human RNA-editing adenosine deaminases responsible for the conversion of adenosine to inosine at specific locations in cellular RNAs. Since inosine is recognized during translation as guanosine, this often results in the expression of protein sequences different from those encoded in the genome. While our knowledge of the ADAR2 structure and catalytic mechanism has grown over the years, our knowledge of ADAR1 has lagged. This is due, at least in part, to the lack of well defined, small RNA substrates useful for mechanistic studies of ADAR1. Here, we describe an ADAR1 substrate RNA that can be prepared by a combination of chemical synthesis and enzymatic ligation. Incorporation of adenosine analogs into this RNA and analysis of the rate of ADAR1 catalyzed deamination revealed similarities and differences in the way the ADARs recognize the edited nucleotide. Importantly, ADAR1 is more dependent than ADAR2 on the presence of N7 in the edited base. This difference between ADAR1 and ADAR2 appears to be dependent on the identity of a single amino acid residue near the active site. Thus, this work provides an important starting point in defining mechanistic differences between two functionally distinct human RNA editing ADARs.  相似文献   

10.
11.
Members of the family of adenosine deaminases acting on RNA (ADARs) can catalyze the hydrolytic deamination of adenosine to inosine and thereby change the sequence of specific mRNAs with highly double-stranded structures. The ADARs all contain one or more repeats of the double-stranded RNA binding motif (DRBM). By both in vitro and in vivo assays, we show that the DRBMs of rat ADAR2 are necessary and sufficient for dimerization of the enzyme. Bioluminescence resonance energy transfer (BRET) demonstrates that ADAR2 also exists as dimers in living mammalian cells and that mutation of DRBM1 lowers the dimerization affinity while mutation of DRBM2 does not. Nonetheless, the editing efficiency of the GluR2 Q/R site depends on a functional DRBM2. The ADAR2 DRBMs thus serve differential roles in RNA dimerization and GluR2 Q/R editing, and we propose a model for RNA editing that incorporates the new findings.  相似文献   

12.
Double-stranded RNA (dsRNA) adenosine deaminase, or DRADA, is a cellular enzyme that modifies adenosine residues to inosines in dsRNA by hydrolytic deamination, replacing A-U with mismatched I-U base pairs. Since it alters the base composition in its substrate RNA, one possible role played by DRADA is to participate in RNA editing. In this article, a brief review is given of characteristics of DRADA. Its possible involvement in RNA editing is also discussed in detail, including specific cases in which DRADA has been implicated as an RNA editing factor.  相似文献   

13.
14.
RNA editing by select adenosine deamination (A-to-I editing) alters functional determinants in certain ion channels and neurotransmitter receptors in vertebrates and invertebrates. In most cases, edited and unedited versions of a given receptor/channel co-exist to expand the functional space of the receptor population. Recent studies have characterized K(+) channels in squid that are edited at multiple positions, revealed a role for Q/R site editing in AMPA receptor assembly, and demonstrated a link between serotonin levels and the extent of editing of a mammalian serotonin receptor.  相似文献   

15.
16.
ADAR2 catalyses the deamination of adenosine to inosine at the GluR2 Q/R site in the pre-mRNA encoding the critical subunit of AMPA receptors. Among ADAR2 substrates this is the vital one as editing at this position is indispensable for normal brain function. However, the regulation of ADAR2 post-translationally remains to be elucidated. We demonstrate that the phosphorylation-dependent prolyl-isomerase Pin1 interacts with ADAR2 and is a positive regulator required for the nuclear localization and stability of ADAR2. Pin1(-/-) mouse embryonic fibroblasts show mislocalization of ADAR2 in the cytoplasm and reduced editing at the GluR2 Q/R and R/G sites. The E3 ubiquitin ligase WWP2 plays a negative role by binding to ADAR2 and catalysing its ubiquitination and subsequent degradation. Therefore, ADAR2 protein levels and catalytic activity are coordinately regulated in a positive manner by Pin1 and negatively by WWP2 and this may have downstream effects on the function of GluR2. Pin1 and WWP2 also regulate the large subunit of RNA Pol II, so these proteins may also coordinately regulate other key cellular proteins.  相似文献   

17.
18.
19.
Abstract: RNA editing plays an important role in determining physiological characteristics of certain glutamate-gated receptor (GluR) channels such as Ca2+ permeability and desensitization kinetics. In one case, the editing changes a gene-encoded glutamine (Q) to an arginine (R) codon located in the channel-forming domain of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor subunit GluR-B and also the kainate receptor subunits GluR5 and GluR6. Another case of RNA editing alters an arginine (R) to a glycine (G) codon at a position termed the "R/G" site of AMPA subunits GluR-B, C, and D. Double-stranded RNA-specific adenosine deaminases (DRADA) have been implicated as agents involved in the editing. By using a human teratocarcinoma cell line, NT2, we investigated the change of the RNA editing of GluR subunits in conjunction with the expression of two DRADA members, DRADA1 and DRADA2 genes, during neuronal differentiation. Whereas Q/R and R/G site RNA editing both become progressively activated in differentiating NT2 cells, the expression of the two DRADA genes can already be detected even in the undifferentiated NT2 cells. Development of the editing machinery appears to require, in addition to DRADA enzymes, a currently unidentified mechanism(s) that may become activated during neuronal differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号