首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to identify the enzymes in human liver catalyzing hydroxylations of bile acids. Fourteen recombinant expressed cytochrome P450 (CYP) enzymes, human liver microsomes from different donors, and selective cytochrome P450 inhibitors were used to study the hydroxylation of taurochenodeoxycholic acid and lithocholic acid. Recombinant expressed CYP3A4 was the only enzyme that was active towards these bile acids and the enzyme catalyzed an efficient 6alpha-hydroxylation of both taurochenodeoxycholic acid and lithocholic acid. The Vmax for 6alpha-hydroxylation of taurochenodeoxycholic acid by CYP3A4 was 18.2 nmol/nmol P450/min and the apparent Km was 90 microM. Cytochrome b5 was required for maximal activity. Human liver microsomes from 10 different donors, in which different P450 marker activities had been determined, were separately incubated with taurochenodeoxycholic acid and lithocholic acid. A strong correlation was found between 6alpha-hydroxylation of taurochenodeoxycholic acid, CYP3A levels (r2=0.97) and testosterone 6beta-hydroxylation (r2=0.9). There was also a strong correlation between 6alpha-hydroxylation of lithocholic acid, CYP3A levels and testosterone 6beta-hydroxylation (r2=0.7). Troleandomycin, a selective inhibitor of CYP3A enzymes, inhibited 6alpha-hydroxylation of taurochenodeoxycholic acid almost completely at a 10 microM concentration. Other inhibitors, such as alpha-naphthoflavone, sulfaphenazole and tranylcypromine had very little or no effect on the activity. The apparent Km for 6alpha-hydroxylation of taurochenodeoxycholic by human liver microsomes was high (716 microM). This might give an explanation for the limited formation of 6alpha-hydroxylated bile acids in healthy humans. From the present results, it can be concluded that CYP3A4 is active in the 6alpha-hydroxylation of both taurochenodeoxycholic acid and lithocholic acid in human liver.  相似文献   

2.
Cholic acid is the major trihydroxy bile acid formed in most mammals. The domestic pig (Sus scrofa) is an exception. The bile of adult pig is devoid of cholic acid whereas hyocholic acid is found in amounts equal to that of cholic acid in humans. The pathway leading to formation of hyocholic acid is believed to be species-specific and to have evolved in the pig to compensate for a nonexistent or deficient cholic acid biosynthesis. However, a high level of cholic acid has recently been found in the bile of fetal pig. Here we describe that a gene encoding the key enzyme in cholic acid biosynthesis, the sterol 12alpha-hydroxylase (CYP8B1), is in fact present in the pig genome. The deduced amino acid sequence shows 81% identity to the human and rabbit orthologues. CYP8B1 mRNA is expressed at significant levels in fetal pig liver. Both CYP8B1 and the key enzyme in hyocholic acid formation, taurochenodeoxycholic acid 6alpha-hydroxylase (CYP4A21), were found to be expressed in pig liver in a developmental-dependent but opposite fashion.  相似文献   

3.
A 7 alpha-hydroxylation is necessary for conversion of both cholesterol and 27-hydroxycholesterol into bile acids. According to current theories, cholesterol 7 alpha-hydroxylase (CYP7A) is responsible for the former and oxysterol 7 alpha-hydroxylase (CYP7B) for the latter reaction. CYP7A is believed to have a very high substrate specificity whereas CYP7B is active toward oxysterols, dehydroepiandrosterone, and pregnenolone. In the present study, 7 alpha-hydroxylation of various oxysterols in liver and kidney was investigated. Surprisingly, human cholesterol 7 alpha-hydroxylase, CYP7A, expressed as a recombinant in Escherichia coli and COS cells, was active toward 20(S)-hydroxycholesterol, 25-hydroxycholesterol, and 27-hydroxycholesterol. This enzyme has previously been thought to be specific for cholesterol and cholestanol. A partially purified and reconstituted cholesterol 7 alpha-hydroxylase enzyme fraction from pig liver showed 7 alpha-hydroxylase activity toward the same oxysterols as metabolized by expressed recombinant human and rat CYP7A. The 7 alpha-hydroxylase activity toward 20(S)-hydroxycholesterol, 25-hydroxycholesterol, and 27-hydroxycholesterol in rat liver was significantly increased by treatment with cholestyramine, an inducer of CYP7A. From the present results it may be concluded that CYP7A is able to function as an oxysterol 7 alpha-hydroxylase, in addition to the previously known human oxysterol 7 alpha-hydroxylase, CYP7B. These findings may have implications for oxysterol-mediated regulation of gene expression and for pathways of bile acid biosynthesis. A possible use of 20(S)-hydroxycholesterol as a marker substrate for CYP7A is proposed.  相似文献   

4.
(24S)-Hydroxycholesterol is formed from cholesterol in the brain and is important for cholesterol homeostasis in this organ. Elimination of (24S)-hydroxycholesterol has been suggested to occur in the liver but little is known about the metabolism of this oxysterol. In the present investigation, we report formation of 7alpha, 24-dihydroxycholesterol in pig and human liver. 7alpha-hydroxylase activity toward both isomers of 24-hydroxycholesterol [(24S) and (24R)] was found in a partially purified and reconstituted cholesterol 7alpha-hydroxylase (CYP7A) enzyme fraction from pig liver microsomes. In contrast, a purified enzyme fraction of pig liver oxysterol 7alpha-hydroxylase with high activity toward 27-hydroxycholesterol did not show any detectable activity toward 24-hydroxycholesterol. 7alpha-Hydroxylation of 24-hydroxycholesterol was strongly inhibited by 7-oxocholesterol, a known inhibitor of CYP7A. Human CYP7A, recombinantly expressed in Escherichia coli and in simian COS cells, showed 7alpha-hydroxylase activity toward both cholesterol and the two isomers of 24-hydroxycholesterol, with a preference for the (24S)-isomer. Our results show that 24-hydroxycholesterol is metabolized by CYP7A, an enzyme previously considered to be specific for cholesterol and cholestanol and not active toward oxysterols. Because CYP7A is the rate-limiting enzyme in the major pathway of bile acid biosynthesis, the possibility is discussed that at least part of the 24-hydroxycholesterol is converted into 7alpha-hydroxylated bile acids by the enzymes involved in the normal biosynthesis of bile acids.  相似文献   

5.
6.
The properties of the species-specific 6 alpha-hydroxylation of taurochenodeoxycholic acid were studied in subcellular fractions from pig liver. The hydroxylation was observed in microsomes but not in mitochondria. A partially purified cytochrome P-450 fraction in the presence of NADPH-cytochrome P-450 reductase, NADPH, and phospholipid catalyzed 6 alpha-hydroxylation of taurochenodeoxycholic acid at a 160-fold higher rate than the microsomes. This cytochrome P-450 fraction did not catalyze 6 alpha-hydroxylation of 5 beta-cholestane-3 alpha,7 alpha-diol or testosterone, nor did it catalyze 7 alpha-hydroxylation of cholesterol.  相似文献   

7.
The aim of the present study was to identify the enzymes in human liver catalyzing hydroxylations of bile acids. Fourteen recombinant expressed cytochrome P450 (CYP) enzymes, human liver microsomes from different donors, and selective cytochrome P450 inhibitors were used to study the hydroxylation of taurochenodeoxycholic acid and lithocholic acid. Recombinant expressed CYP3A4 was the only enzyme that was active towards these bile acids and the enzyme catalyzed an efficient 6α-hydroxylation of both taurochenodeoxycholic acid and lithocholic acid. The Vmax for 6α-hydroxylation of taurochenodeoxycholic acid by CYP3A4 was 18.2 nmol/nmol P450/min and the apparent Km was 90 μM. Cytochrome b5 was required for maximal activity. Human liver microsomes from 10 different donors, in which different P450 marker activities had been determined, were separately incubated with taurochenodeoxycholic acid and lithocholic acid. A strong correlation was found between 6α-hydroxylation of taurochenodeoxycholic acid, CYP3A levels (r2=0.97) and testosterone 6β-hydroxylation (r2=0.9). There was also a strong correlation between 6α-hydroxylation of lithocholic acid, CYP3A levels and testosterone 6β-hydroxylation (r2=0.7). Troleandomycin, a selective inhibitor of CYP3A enzymes, inhibited 6α-hydroxylation of taurochenodeoxycholic acid almost completely at a 10 μM concentration. Other inhibitors, such as α-naphthoflavone, sulfaphenazole and tranylcypromine had very little or no effect on the activity. The apparent Km for 6α-hydroxylation of taurochenodeoxycholic by human liver microsomes was high (716 μM). This might give an explanation for the limited formation of 6α-hydroxylated bile acids in healthy humans. From the present results, it can be concluded that CYP3A4 is active in the 6α-hydroxylation of both taurochenodeoxycholic acid and lithocholic acid in human liver.  相似文献   

8.
The developmental variation of cytochrome P450 (CYP)7A1, CYP7B1, CYP27A1, and 3beta-hydroxy-Delta(5)-C(27)-steroid dehydrogenase, key enzymes in bile acid biosynthesis, were investigated in pigs of different ages. As part of these studies, peptide sequences from a purified pig liver oxysterol 7alpha-hydroxylase were analyzed. The sequences showed a high degree of identity with those of murine and human CYP7B1. Enzymatic activities and mRNA levels of CYP27A1 and 3beta-hydroxy-Delta(5)-C(27)-steroid dehydrogenase were similar in livers of newborn and 6-month-old pigs. Enzymatic activity mediated by CYP7A1 increased several-fold between infancy and adolescence. Hepatic CYP7A1 and CYP7B1 mRNA levels increased several-fold with age. Hepatic microsomal 7alpha-hydroxylation of 27-hydroxycholesterol and dehydroepiandrosterone, substrates typical for CYP7B1, increased about 5-fold between infancy and adolescence whereas the activities in kidney microsomes decreased at least 10-fold. In conclusion, the results indicate that the expression of CYP27A1 and 3beta-hydroxy-Delta(5)-C(27)-steroid dehydrogenase are similar in livers of newborn and 6-month-old pigs whereas the levels of CYP7A1 increase. The finding that the levels of CYP7B1 increase with age in the liver but decrease in the kidney suggest a tissue-specific developmental regulation of CYP7B1. The age-dependent variation in the liver and kidney suggests that hormonal factors are involved in the regulation of CYP7B1.  相似文献   

9.
10.
11.
Both a 25-hydroxylation and a 1alpha-hydroxylation are necessary for the conversion of vitamin D(3) into the calcium-regulating hormone 1alpha,25-dihydroxyvitamin D(3). According to current knowledge, the hepatic mitochondrial cytochrome P450 (CYP) 27A and microsomal CYP2D25 are able to catalyze the former bioactivation step. Substantial 25-hydroxylase activity has also been demonstrated in kidney. This paper describes the molecular cloning and characterization of a microsomal vitamin D(3) 25- and 1alpha-hydroxylase in kidney. The enzyme purified from pig kidney and the recombinant enzyme expressed in COS cells catalyzed 25-hydroxylation of vitamin D(3) and 1alpha-hydroxyvitamin D(3) and, in addition, 1alpha-hydroxylation of 25-hydroxyvitamin D(3). The cDNA encodes a protein of 500 amino acids. Both the DNA sequence and the deduced peptide sequence of the renal enzyme are homologous with those of the hepatic vitamin D(3) 25-hydroxylase CYP2D25. Genomic Southern blot analysis suggested the presence of a single gene for CYP2D25 in the pig. Immunohistochemistry experiments indicated that CYP2D25 is expressed almost exclusively in the cells of cortical proximal tubules. The expression of CYP2D25 in kidney, but not in liver, was much higher in the adult pig than in the newborn. These findings indicate a tissue-specific developmental regulation of CYP2D25. The results from the current and previous studies on renal vitamin D hydroxylations imply that CYP2D25 has a biological role in kidney.  相似文献   

12.
13.
Cytochrome P4504A4 (CYP4A4) is a hormonally induced pulmonary cytochrome P450 which metabolizes prostaglandins and arachidonic acid (AA) to their omega-hydroxylated products. Although the physiological function of this enzyme is unknown, prostaglandins play an important role in the regulation of reproductive, vascular, intestinal, and inflammatory systems and 20-hydroxyeicosatetraenoic acid, the omega-hydroxylated product of arachidonate, is a potent vasoconstrictor. Therefore, it is important to obtain sufficient quantities of the protein for kinetic and biophysical characterization. A CYP4A4 construct was prepared and expressed in Escherichia coli. The enzyme was purified, and its activity with substrates prostaglandin E(1) (PGE(1)) and AA was examined in the presence and absence of cytochrome b(5) (cyt b(5)) and with a heme-depleted form of cyt b(5) (apo b(5)). The stimulatory role played by cyt b(5) in this system is not dependent on electron transfer from cyt b(5) to the CYP4A4 as similar stimulation was observed with apo b(5). Rapid kinetic measurement of CYP4A4 electron transfer rates confirmed this result. Both flavin and heme reduction rates were constant in the absence and presence of cyt b(5) or apo b(5). CD spectroscopy demonstrated that a conformational change occurred in CYP4A4 protein upon binding of cyt b(5) or apo b(5). Finally, acetylenic fatty acid inhibitors 17-octadecynoic acid, 12-hydroxy-16-heptadecynoic acid, 15-hexadecynoic acid, and 10-undecynoic acid (10-UDYA) were used to probe the substrate-binding pocket of CYP4A4. The short-chain fatty acid inhibitor 10-UDYA was unable to inhibit either PGE(1) or AA metabolism. All but 10-UDYA were effective inhibitors of CYP4A4.  相似文献   

14.
We cloned a new cytochrome P450 cDNA encoding testosterone 7alpha-hydroxylase in the Chinese hamster, designated CYP2A15 which shares significant amino acid sequence homology with members of the CYP2A subfamily. The CYP2A15 cDNA was isolated by screening a liver cDNA library and the sequence contains an open reading frame of 1482 nucleotides encoding a polypeptide of 493 amino acids with a calculated molecular mass of 56,295 Da. This is flanked by a 5'-untranslated region of 2 bp and a 3' untranslated region of 191 bp including the poly(A) tail. We determined the catalytic activity of CYP2A15 using microsomes obtained by transient expression of its cDNA in transfected COS-7 cells. The heterologously expressed CYP2A15 was found to hydroxylate testosterone at position 7alpha in a reconstituted system. RT-PCR experiments revealed that the mRNA of CYP2A15 was expressed in liver, but not detected in kidney, lung, or small intestine. The expression of CYP2A15 mRNA was slightly induced by treatment with either rifampicin or 3-methylcholanthrene.  相似文献   

15.
16.
目的克隆我国资源小型猪品系巴马香猪肝脏中的CYP3A88基因,并进行生物信息学分析。方法应用RACE(Rapid Amplification of cDNA Ends)技术对其全长进行扩增,测序,利用Internet和GenBank数据库对其序列进行生物信息学分析。结果首次克隆并鉴定了我国资源小型猪品系巴马香猪肝脏中CYP3A88(GenBank登录号:EF625347)的编码区,获得大小为1965bp的全长cDNA,编码区长为1512bp,编码503个氨基酸;比较核苷酸序列,与小型猪CYP3A39相似性高达94%,而与人等其它动物的CYP3A相似性则在86%以下;推导和分析氨基酸序列表明,与小型猪CYP3A其它成员(CYP3A39、CYP3A29、CYP3A22)进行对比,其相似性分别为92%,89%,80%,而将小型猪与人的CYP3A分别比对,小型猪CYP3A88与人CYP3A4相似性最高,为77%;对其二级结构预测,它可能含12个α螺旋,4个β折叠;经NCBI上的CDD程序分析可知,其39~491氨基酸区域为P4503A亚家族保守结构区域;经聚类分析,小型猪和狗的CYP3A与人有较近的进化关系;通过同源建模法对其在线建模,人CYP3A4晶体结构作为其模建模型,得到了其经典的三维结构。结论在猪CYP3A家族四个基因中,CYP3A88在序列和高级结构上均与人CYP3A4的最为相似。  相似文献   

17.
18.
The CYP4A fatty acid omega-hydroxylases are involved in important physiological processes such as the regulation of vascular pressure. A previous study of chimeras of the rat CYP4A2 and CYP4A3 enzymes established that the regiochemistry of fatty acid hydroxylation is determined by the first 119 amino acid residues (Hoch, U., Zhang. Z. P., Kroetz, D. L., and Ortiz de Montellano, P. R. (2000) Arch. Biochem. Biophys. 373, 63-71). The role of the individual amino acid differences in this region has therefore been examined by site-specific mutagenesis to determine which residues actually control the omega- versus (omega-1)-regiospecificity. The results indicate that regiospecificity is controlled by the presence or absence of a three-residue insert (Ser-114, Gly-115, Ile-116) in CYP4A3 and by the residue at position 119 (CYP4A3 numbering). Furthermore, analysis of the absolute stereochemistry of the 11-hydroxylauric acid product indicates that this stereochemistry is not very sensitive to changes in the residues that line the substrate access channel. These results define a model of the specificity determinants of an important class of cytochrome P450 enzymes.  相似文献   

19.
20.
The metabolism of cholesterol in isolated intact pig liver mitochondria has been investigated. Six major cholesterol metabolites were identified by gas-liquid chromatography-mass spectrometry, the metabolic end product being 7 alpha-hydroxy-3-oxo-4-cholestenoic acid. Incubations with the synthesized intermediates suggested that the major pathway from cholesterol to this acid proceeds via the sequence of 26-hydroxylation, 7 alpha-hydroxylation, further oxidation of the side chain and oxidation/isomerization in the A-ring. The observed reactions prove that in addition to a sterol 26-hydroxylase, pig liver mitochondria contain significant amounts of a 7 alpha-hydroxylase active on side chain oxygenated 3 beta-hydroxy-delta 5-C27 steroids, an oxidoreductase active in the side chain of 26-hydroxylated steroids and a 3 beta-hydroxy-delta 5 steroid oxidoreductase active on 7 alpha-hydroxylated C27 steroids. Since 7 alpha-hydroxy-3-oxo-4-cholestenoic acid is believed to be an important precursor of chenodeoxycholic acid, this study shows that the first reactions in the biosynthesis of bile acids can be exclusively mitochondrial and thereby bypass microsomal cholesterol 7 alpha-hydroxylase as the rate-limiting enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号