首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of 57 (36 and 21) Azotobacter chroococcum were isolated from wheat (Triticum aestivum) rhizospheric soil irrigated with industrial wastewater (about a decade) and ground water (uncontaminated) and characterized on the basis of morphological, cultural and biochemical characteristics. Rhizospheric soils were analyzed for metal concentrations by atomic absorption spectrophotometery and the test soil samples were contaminated with Fe, Zn, Cu, Cr, Ni and Pb. All the isolates of A. chroococcum were tested for their resistance against Hg2+, Cd2+, Cu2+, Cr3+, Cr6+, Zn2+, Ni2+ and Pb2+. Among 36 isolates of Azotobacter from soil irrigated with industrial wastewater, 94.4% were resistant to Pb2+ and Hg2+ and 86.1%, 77.5% and 63.8% were resistant to Zn2+, Cr6+ and Cr3+ respectively. The highest minimum inhibitory concentration of 200 microg/ml for Hg2+ and 1600 microg/ml for other metals were observed against these bacteria from soil. The incidences of metal resistance and MICs of metals for A. chroococcum from wastewater irrigated soil were significantly different to those of uncontaminated soil. All A. chroococcum isolates were tested for their resistance against 11 commonly used antibiotics/drugs. 91.6% were found to be resistant against nitrofurantoin while 86.4% and 80.5% were found to be resistant against polymyxin-B and co-trimoxazole respectively. Agarose gel electrophoresis using the miniprep method for plasmid isolation revealed that these isolates harboured plasmids of molecular weights 58.8 and 64.5 kb using EcoRI and HindIII digests of X DNA and undigested X DNA as standard markers.  相似文献   

2.
A study on the distribution patterns of enteropathogenic bacteria polluting the shoreline in Natal, Rio Grande do Norte, Brazil, was carried out based on 72 samples obtained from three storm sewers and adjoining beach locations, Praia do Meio (PM), Areia Preta (AP) and Ponta Negra (PN). From each location, 12 water samples were taken and analyzed for fecal coliforms (FC) and Escherichia coli. In AP, two (16.7%) of the seawater samples and five (41.7%) of the storm sewer samples yielded values above 1.1 x 107 FC/100 ml, whereas only one (8.3%) of the samples from PM reached this level. There was no correlation (p > 0.05) between rainfall indices and FC values. A total of 64 E. coli isolates were obtained: 37 from the storm sewer samples and 27 from the seawater samples. Of these isolates, four (O143, two O112ac, and O124) were enteroinvasive and two (O111 and O125) were enteropathogenic. Resistance to antibiotics and to heavy metals was also analyzed. Almost 36% of the E. coli strains isolated were resistant to more than one antibiotic. All strains were resistant to zinc and copper at the highest concentration tested (250 microg/ml), and several (23.4%) were resistant to mercury at 50 microg/ml. Our results agreed with previous reports that antibiotic resistance is commonly associated with heavy-metal resistance in pathogens.  相似文献   

3.
Several facultative anaerobes tolerant to high levels of chromate (>400 mg/ml) were isolated from tannery effluents. These isolates displayed varying degrees of Cr(VI) reduction under aerobic and anaerobic conditions at room temperature (24+/-2 degrees C). Interestingly, eight isolates were efficient in reducing 70% Cr(VI) anaerobically. This includes 5 isolates of genus Aerococcus, two isolates of Micrococcus and single isolate of genus Aeromonas. These isolates were subjected to further characterization for possible use in Cr(VI) detoxification of industrial wastes. This is the first report of Aerococcus sp. capable of Cr(VI) reduction >70% anaerobically. These bacteria were further checked for tolerance to a variety of other heavy metals. Our study indicates the possible use of these bacteria in environmental clean up.  相似文献   

4.
Two chromium-resistant bacterial strains, CrT-1 and CrT-13, tolerant up to 40 mg K2CrO4 ml(-1) on nutrient agar, 25 mg ml(-1) in nutrient broth, and up to 10 mg ml(-1) in acetate-minimal media, were identified as Ochrobactrum intermedium and Brevibacterium sp., respectively, on the basis of 16S rRNA gene sequencing. Uptake of chromate was greater in living cells than in heat-killed on dried cells. CrT-1 reduced 82%, 28% and 16% of Cr(VI) at 100, 500, and 1000 microg ml(-1) after 24 h while CrT-13 reduced 41%, 14% and 9%. Other heavy metals at low concentrations did not affect these reductions. At 150 and 300 microg ml(-1) in an industrial effluent sample Cr(VI) was reduced by 87% and 71%, respectively, with CrT-1 and by 68% and 47% with CrT-13.  相似文献   

5.
Streptococcus pneumoniae, a common pathogen in pediatric infections, has become resistant to penicillin and make these infections difficult to treat. Rifampin and chloramphenicol have been recommended as alternative therapies, since they are less costly and more accessible to communities with limited resources. However, their use may be restricted by the differing levels of resistance found in target populations. The objective was to determine minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) for chloramphenicol and rifampin in strains of S. pneumoniae. These strains were newly isolated from children under age 5 that had demonstrated systemic infections and meningitis. A subgroup of 107 isolates of S. pneumoniae was selected from 324 strains isolated during a period of 2 years (1994-1996). Among these isolates, 60 were penicillin-resistant and 47 were susceptible; 53 isolates were from children with meningitis. MIC and MBC for chloramphenicol and rifampicin were obtained by standard methods recommended by the National Committee for Clinical Laboratory Standards (NCCLS). S. pneumoniae ATCC strain 49619 served as the control. An isolate was considered susceptible to chloramphenicol when MIC = 4 microg/ml and resistant when MIC = 8 microg/ml. A strain was considered susceptible to rifampin when MIC = 1 microg/ml and resistant when MIC = 4 microg/ml. MBC was determined by recording the lower concentration of the antibiotic that inhibited 99.9% of the initial inoculum. Chloramphenicol resistance was found in 21% of the 107 isolates. In the group susceptible to penicillin, 11% were resistant to chloramphenicol and in the group resistant to penicillin 28% was resistant to chloramphenicol as well. MBC was found > 4 microg/ml in 28% of the isolates susceptible to penicillin and in 60% of the resistant isolates. No isolates were found resistant to rifampin. However, 2 penicillin resistant isolates showed CBM > 1 microg/ml to rifampin, and one with CIM = 1 microg/ml had a MBC to rifampicin of 16 microg/ml. Meningitis isolates showed higher CIM and CBM than the group of total isolates. These data suggest that chloramphenicol is not recommended for invasive infections caused by S. pneumoniae in Colombia. Rifampin is a more effective therapy in combination with other antibiotics for treatment of this kind of infections. Further studies are necessary to clarify the significance of low levels of MBC to rifampin found in some strains, since this may affect the efficacy of therapies that include this antibiotic.  相似文献   

6.
The ciliate, Euplotes mutabilis, isolated from industrial wastewater of tanneries of Kasur, Pakistan, showed tolerance against Cd2+ (22 microg ml(-1)), Cr6+ (60 microg ml(-1)), Pb2+ (75 microg ml(-1)) and Cu2+ (22 microg ml(-1)). The heavy metals, Cr and Pb, were randomly selected for determining the capability of the ciliate to reduce the concentration of these metal ions in the medium and to evaluate its potential use as bioremediator of wastewater. The live protozoans could remove 97% of Pb2+ and 98% of Cr6+ from the medium, 96 h after inoculation of the medium containing 10 micro gml(-1) of metal ions. The acid digestion of ciliate showed 89% of Pb2+ and 93% of Cr6+ ions accumulated in the organism. When the ciliate was exposed to heavy metals at a larger scale viz., 10 l of water containing 10 micro gml(-1) of heavy metals, it removed 86% of Pb2+ and 90% of Cr6+ from the medium. The metal uptake ability of E. mutabilis, as evidenced by its survival and growth in 100ml and 10 l of water containing 10 microg ml(-1) of metal ions, reduction in the concentration of heavy metals in the medium and its increased uptake by the live cells, and no metal uptake by the heat killed ciliate can be exploited for metal detoxification of industrial wastes and environmental clean-up operations.  相似文献   

7.
The aim of this study was to determine the prevalence of primary resistance to 5-fluorocytosine (5FC) among clinical isolates of yeasts in Spain where this drug is not currently available for therapy. We have tested the in vitro activity of 5FC against 1,021 recent yeast clinical isolates, including 522 Candida albicans, 140 Candida parapsilosis, 68 Candida glabrata, 41 Candida dubliniensis, 50 Candida guilliermondii, 34 Candida tropicalis, 28 Candida krusei, 20 Candida famata, 11 Cryptococcus neoformans, 5 Cryptococcus albidus, 43 Rhodotorula spp., 24 Trichosporon spp., 5 Saccharomyces cerevisiae, 9 Pichia spp., and 21 isolates from other 11 yeast species. The MICs were determined by the ATB Fungus agar microdilution test (bioMerieux, France) and the following interpretive breakpoints were used: susceptible, > 4 microg/ml; intermediate, 8 to 16 microg/ml; resistant, > 32 microg/ml. 5FC was very active against Candida spp. and other medically important yeasts as 852 (83.4%) of the studied isolates were susceptible (MIC < 4 microg/ml). The species most susceptible to 5FC were C. dubliniensis (100%of isolates; MIC90, 0.25 microg/ml), C. famata (100% of isolates; MIC90, 0.25 microg/ml), C. guilliermondii (98%of isolates; MIC90, 0.25 microg/ml), C. glabrata (95.5% of isolates; MIC90, 0.25 microg/ml), and C. neoformans (90.9% of isolates; MIC90, 2 microg/ml). Primary resistance to 5FC was very uncommon, and a MIC > 32 microg/ml, indicator of in vitro resistance, was observed in 106 isolates (10.4%): 77 C. albicans (16.5% of isolates; MIC90, > 128 microg/ml), 9 C. parapsilosis (6.4% of isolates; MIC90, 8 microg/ml), 4 C. albidus (80% of isolates, MIC50, > 128 microg/ml), 3 C. glabrata (4.4% of isolates; MIC90, 0.25 microg/ml), 3 C. tropicalis (8.8% of isolates; MIC90, 4 microg/ml), 2 C. krusei (7.1% of isolates; MIC90, 8 microg/ml), 2 Rhodotorula spp. (4.6% of isolates, MIC90, 1 microg/ml), 8 Trichosporon spp. (33.3% of isolates; MIC90, 64 microg/ml), and 1 C. lipolytica (50% of isolates). Interestingly, most C. albicans (67 out of 77 isolates) resistant to 5FC were serotype B isolates.  相似文献   

8.
Twenty six thermotolerant strains resistant to high levels of chromium (50-250 microg/ml) were isolated from treated tannery effluent. They were also found resistant to multiple heavy metals and antibiotics. Majority of them were resistant to copper and bacitracin. Nine strains representing different resistance patterns were selected for plasmid profile and conjugation studies. Agarose gel electrophoresis results revealed that 6 strains harboured a single plasmid, whereas 3 strains exhibited 2 plasmid bands. Among antimicrobials, co-trimazole and bacitracin and among metals, Cu2+, Cd2+, Zn2+ and Ni2+ resistance were transferred most frequently at variable rates. However, chromium resistance was transferred in 6 strains with a frequency ranging 19-49x10(-2). Resistance to Co2+ and Hg2+ did not transfer under environmental conditions. Among the nine strains, three were found predominantly uropathogenic Escherichia coli (UPEC) serotype 04, whereas two strains were untypable. In addition, 4 transconjugants also showed a positive result after serotyping.  相似文献   

9.
Eleven genotypically related Klebsiella pneumoniae isolates were obtained from 11 patients. All isolates were resistant to third-generation cephalosporins due to the production of SHV-2a extended-spectrum beta-lactamase. Comparison of the outer membrane protein profiles revealed one isolate that lacked porins. This porin-deficient isolate was also resistant to cefoxitin (MIC 128 microg ml(-1)) and moxalactam (MIC 64 microg ml(-1)) and had elevated MIC of meropenem (2 microg ml(-1)) when compared to porin-expressing isolates (2-8, 4 and <0.06-0.125 microg ml(-1), respectively). Higher MICs, associated with loss of porins in outer membrane, were also observed for cefotaxime (4-8-fold), cefepime (>2-16-fold), ciprofloxacin (4-16-fold), imipenem and aztreonam (2-16-fold), but there was no significant difference among MICs of ceftazidime. The porin-deficient mutant was probably selected in vivo during ofloxacin therapy.  相似文献   

10.
Heavy metal contents of agricultural and industrial soils were determined by atomic absorption spectrophotometry. The analysis of the samples collected from two different locations revealed significantly high levels of Fe, Zn, Cu, Cr and Ni. Certain microbiological parameters (total aerobic heterotrophs, asymbiotic N2-fixers, total Actinomycetes and fungi) were also monitored from these soils. A total of 70 bacterial isolates from agricultural and industrial soils were examined for plasmid DNA content and resistance to the antibiotics amoxycillin, cloxacillin, chloramphenicol, doxycycline methicillin, nalidixic acid, and tetracycline. Minimum inhibitory concentrations (MICs) of Cu, Cr, Pb, Cd, Hg, Zn, and Ni for each isolate were also determined. Resistance was most frequent to methicillin (48.5%), cloxacillin (45.7%), and nalidixic acid (40%) for all isolates of bacteria. The highest MICs observed were 100 g/ml for mercury, 800 g/ml for Ni and 1600 g/ml for other metals. The incidences of metal resistance and MICs of metals for bacteria from industrial soil were significantly different to those of agricultural soil. On a percentage basis, 91.4% of the total bacterial isolates from industrial soil were found to harbour plasmids whereas 40% of the isolates from agricultural soil contained plasmids.  相似文献   

11.
Study of antibiotic resistance was done among the metal tolerant E. coli isolates from hospital wastewater at Lucknow city. Metal tolerance was determined in terms of visible growth on metal amended plates at their varying concentrations. MICs were also determined among all metal tolerant E. coli isolates. All the isolates showed their MIC in between 100-2000 µg/ml while maximum isolates demonstrated their MICs at 400, 800 and 1600 µg/ml against all the metal tested. 23.07% of the isolates showed their MIC at 2000 µg/ml against Ni3+. Multiple antibiotic resistances were recorded among all the metal resistant E.coli isolates. A high level of resistance was observed against Methicillin (86.53%) followed by penicillin (73.07%), Cephradin (57.69%), Rifampicin (34.61%), Erythromycin (26.92%), Nalidixic acids (25%), Chloramphenicol (3.84%) and least to Gentamycine (1.92%). Streptomycin was recorded most effective against E.coli isolates among the entire antibiotic tested. Antimicrobial resistance observed among the bacteria from the aquatic system contaminated with hospital wastes may be threatful for the environment and public health both.  相似文献   

12.
Summary A total of 107 bacterial strains were isolated from rhizosphere soil of Diplachne fusca naturally grown in industrial metal-contaminated soils. All the isolates were examined for their ability to tolerate Cd2+, Cr3+, Co2+, Cu2+, Pb2+, Ni2+ and Zn2+ in their growth medium, in addition, three related phenotypic characters, the ability to produce acids and siderophores and/or calcium phosphate solubilization, were tested. The resistance patterns, expressed as MICs, for all bacterial isolates to seven different metal ions were surveyed by using the agar dilution method. A great proportion of the isolates were resistant to Cr (99%), Pb (93%), Cu (87%) and Zn (86%). On the other hand, 77, 49 and 45% were sensitive to Co, Ni and Cd, respectively. The majority of the strains tested (98%) were multiple metal-resistant, with hexametal resistance as the major pattern (24.2%). The increase in metal ion uptake (especially Cr, Pb, Zn and Ni) by D. fusca was correlated with higher numbers of siderophore-producing, phosphate-solubilizing and acid-producing bacteria 95, 81 and 64%, respectively.  相似文献   

13.
Environmental pollution with toxic heavy metals is increasing throughout the world alongside industrial development. Microorganisms and microbial products can be highly efficient bioaccumulators of soluble and particulate forms of metals, especially dilute external solutions. Microbe related technologies (Biotechnology) may provide an alternative or additive conventional method for metal removal or metal recovery. This study dealt with isolation, identification and characterization of heavy metal-resistant (Pb2+, Cd2+, Al3+, Cu2+, Ag2+ and Sn2+) bacteria from sewage wastewater at Taif Province, Saudi Arabia. Nine bacterial isolates were selected by using an enrichment isolation procedure based on high level of heavy metal resistance. All the isolates showed high resistance to heavy metals with Minimum Inhibitor Concentration (MIC) ranging from 800 μg/ml to 1400 μg/ml. All nine resistant isolates showed multiple tolerances to heavy metals. On the basis of morphological, biochemical and 16S rRNA characterization, the most potent isolates (Cd1-1, Ag1-1, Ag1-3 and Sn1-1) were identified as Alcaligenes faecalis. Scanning electron microscope analysis showed that the morphology of Alcaligenes faecalis Ag1-1 was unchanged after growth in medium without and with addition of Ag2+ indicative Ag2+ is not toxic to the isolate under the conditions tested. The ability of Alcaligenes faecalis Ag1-1 to synthesize sliver nanoparticles was examined. The heavy metal-resistant bacteria obtained could be useful for the bioremediation of heavy metal-contaminated environment.  相似文献   

14.
Culturable psychrotolerant bacteria were isolated from the top snow on the high Antarctic Plateau surrounding the research station Concordia. A total of 80 isolates were recovered, by enrichment cultures, from two different isolation sites (a distant pristine site [75° S 123° E] and a site near the secondary runway of Concordia). All isolates were classified to the genus Paenibacillus by 16S rRNA gene phylogenetic analysis and belonged to two different species (based on threshold of 97 % similarity in 16S rRNA gene sequence). ERIC-PCR fingerprinting indicated that the isolates from the two different sites were not all clonal. All isolates grew well from 4 to 37 °C and were resistant to ampicillin and streptomycin. In addition, the isolates from the secondary runway were resistant to chromate and sensitive to chloramphenicol, contrary to those from the pristine site. The isolates were compared to 29 Paenibacillus isolates, which were previously recovered from inside the Concordia research station. One of these inside isolates showed ERIC- and REP-PCR fingerprinting profiles identical to those of the runway isolates and was the only inside isolate that was resistant to chromate and sensitive to chloramphenicol. The latter suggested that dissemination of culturable Paenibacillus strains between the harsh Antarctic environment and the inside of the Concordia research station occurred. In addition, inducible prophages, which are potentially involved in horizontal dissemination of genes, were detected in Paenibacillus isolates recovered from outside and inside the station. The highest lysogeny was observed in strains harvested from the hostile environment outside the station.  相似文献   

15.
Metal resistances of Chlorophyta from rivers polluted by heavy metals   总被引:3,自引:0,他引:3  
SUMMARY. Two-hundred isolates, comprising 87 species of Chlorophyta, were obtained from sites along the Rivers Hayle and Gannel. which drain the ancient mining region of Cornwall. All isolates were tested for sensitivity to copper, lead, zinc and cadmium. In general, isolates were resistant to the metals normally present in their habitats. However, the distribution of metal sensitivities of the algae from a given site was broad; the effect of metal pollution was to shift the median response of a population toward higher metal resistance. Resistant algae of two general classes were identified: some normally sensitive species were metal-tolerant, presumably through genetic adaptation; other species were metal-resistant even when isolated from a non-polluted habitat. Many isolates of both types displayed multiple-resistances or co-tolerances. For example, copper tolerant isolates from high copper sites tended to be also lead resistant; however, algae from high lead sites were usually very copper sensitive. Zinc and cadmium resistances also were correlated among isolates from both zinc-polluted and non-polluted sites. General metal-insensitivity seemed to be common, particularly among gelatinous Chlamydomonas and Gloeococcus species. Thus, several evolutionary strategies appear to coexist among algae from metal polluted environments.  相似文献   

16.
Summary Ten moderately halophilic spore-forming bacilli were isolated from saline soils in Iran and their intrinsic high-level resistance to chromate, arsenate, tellurite, selenite, selenate and biselenite was identified by an agar dilution method. Minimum inhibitory concentration (MIC) for each oxyanion was determined. All isolates were resistant to higher concentrations of arsenate. The resistance level of the isolates to selenooxyanions was between 10 and 40 mM. Maximum and minimum tolerance against oxyanions was seen in selenite and biselenite, respectively. Although toxic metal resistance in the isolates was not different from non-halophilic bacteria that has been reported, unusual resistance to arsenate (250 mM), sodium chromate (75 mM) and potassium chromate (70 mM) was observed. The results obtained in this study revealed that all isolates were obviously susceptible to silver, nickel, zinc and cobalt, while seven isolates were resistant to lead. Susceptibility to copper and cadmium varied among the isolates. Silver had the maximum toxicity, whereas lead and copper showed minimum toxicity. The impact of salinity on the toxicity of oxyanions was also studied. Our results showed that in general an increase in salinity from 5% (w/v) to 15% (w/v) enhanced tolerance to toxic oxyanions.  相似文献   

17.
The effects of copper on the microbial community of a coral reef sponge   总被引:1,自引:0,他引:1  
Marine sponges often harbour communities of symbiotic microorganisms that fulfil necessary functions for the well-being of their hosts. Microbial communities associated with the sponge Rhopaloeides odorabile were used as bioindicators for sublethal cupric ion (Cu2+) stress. A combined strategy incorporating molecular, cultivation and electron microscopy techniques was adopted to monitor changes in microbial diversity. The total density of sponge-associated bacteria and counts of the predominant cultivated symbiont (alpha-proteobacterium strain NW001) were significantly reduced in response to Cu2+ concentrations of 1.7 microg l(-1) and above after 14 days of exposure. The number of operational taxonomic units (OTUs) detected by restriction fragment length polymorphism (RFLP) decreased by 64% in sponges exposed to 223 microg l(-1) Cu2+ for 48 h and by 46% in sponges exposed to 19.4 microg l(-1) Cu2+ for 14 days. Electron microscopy was used to identify 17 predominant bacterial morphotypes, composing 47% of the total observed cells in control sponges. A reduction in the proportion of these morphotypes to 25% of observed cells was evident in sponges exposed to a Cu2+ concentration of 19.4 microg l(-1). Although the abundance of most morphotypes decreased under Cu2+ stress, three morphotypes were not reduced in numbers and a single morpho-type actually increased in abundance. Bacterial numbers, as detected using fluorescence in situ hybridization (FISH), decreased significantly after 48 h exposure to 19.4 microg l(-1) Cu2+. Archaea, which are normally prolific in R. odorabile, were not detected after exposure to a Cu2+ concentration of 19.4 microg l(-1) for 14 days, indicating that many of the microorganisms associated with R. odorabile are sensitive to free copper. Sponges exposed to a Cu2+ concentration of 223 microg l(-1) became highly necrosed after 48 h and accumulated 142 +/- 18 mg kg(-1) copper, whereas sponges exposed to 19.4 microg l(-1) Cu2+ accumulated 306 +/- 15 mg kg(-1) copper after 14 days without apoptosis or mortality. Not only do sponges have potential for monitoring elevated concentrations of heavy metals but also examining changes in their microbial symbionts is a novel and sensitive bioindicator for the assessment of pollution on important microbial communities.  相似文献   

18.
The minimum inhibitory concentrations (MICs) to rifampicin (RFP) for Mycobacterium tuberculosis complex distribute bipartitely, the most susceptible, wild isolates showing < or = 0.03 microg/ml of MICs and the resistant isolates are >2.0 microg/ml. As the results, a very few number of isolates showing the MICs between 0.06 microg/ml to 2.0 microg/ml are still interpreted as "indeterminate" by BrothMIC MTB. In this communication, we determined genetic mutations in rpoB gene of the isolates of M. tuberculosis complex those MICs to RFP resulted in "indeterminate" interpretations. Through the direct base-sequencing, genetic mutation (s) in rpoB gene associated with amino acid substitution(s) were found in 21 of 27 clinical isolates of M. tuberculosis complex. All the isolates with 0.06 microg/ml of MICs were confirmed as being a wild type, whereas those with > or =0.125 microg/ml of MICs have a variety of genetic mutations. There found one exception, that is, a strain with 0.5 microg/ml of MIC revealed no mutation in rpoB gene. In addition to direct base-sequencing, a line probe assay, LiPA . Rif TB (Innogenetics N.V., Zwijnaarde, Belgium) was comparatively evaluated. The results obtained were highly correlated, LiPA . Rif TB giving comparable readings for 26 (96.3S) of 27 isolates tested. With these results, it can be concluded that the interpretive breakpoints for RFP MICs determined by BrothMIC MTB should be revised as follows: susceptible, < or =0.06 microg/ml, and resistant, > or =0.125 microg/ml. Secondly, LiPA . Rif TB gave an accurate and rapid interpretation for RFP resistance, but it may be concerned for the occasional false-susceptible readings.  相似文献   

19.
Total coliforms and total coliforms resistant to streptomycin, tetracycline, or chloramphenicol were isolated from filtered activated sludge effluents before and after UV light irradiation. Although the UV irradiation effectively disinfected the wastewater effluent, the percentage of the total surviving coliform population resistant to tetracycline or chloramphenicol was significantly higher than the percentage of the total coliform population resistant to those antibiotics before UV irradiation. This finding was attributed to the mechanism of R-factor-mediated resistance to tetracycline. No significant difference was noted for the percentage of the surviving total coliform population resistant to streptomycin before or after UV irradiation. Multiple drug resistance patterns of 300 total coliform isolates revealed that 82% were resistant to two or more antibiotics. Furthermore, 46% of these isolates were capable of transferring antibiotic resistance to a sensitive strain of Escherichia coli.  相似文献   

20.
Forty strains of Acinetobacter were isolated from different environmental sources. All the strains were classified into four genospecies, i.e. A. baumannii (33 isolates), A. calcoaceticus (three isolates), A. junii (three isolates) and A. genospecies3 (one isolate). Susceptibility of these 40 strains to salts of 20 heavy metals and 18 antibiotics was tested by the agar dilution method. All environmental isolates of Acinetobacter were resistant to multiple metal ions (minimum 13 metal ions) while all but one of the strains were resistant to multiple antibiotics (minimum four antibiotics). The maximum number of strains were found to be sensitive to mercury (60% strains) while all strains were resistant to copper, lead, boron and tungsten even at 10 mm concentration. Salts of these four metal ions may be added to the growth medium to facilitate selective isolation of Acinetobacter. Rifampicin and nalidixic acid were the most toxic antibiotics, inhibiting 94.5 and 89.5% of the acinetobacters, respectively. A. genospecies3 was found to be the most resistant species, tolerating high concentrations of all the 20 metal ions and also to a greater number of antibiotics than any other species of Acinetobacter tested. An inhibitory concentration (10 mm) of Ni2+ and Zn2+ was observed to inhibit the growth of all of the clinical isolates but allowed the growth of the environmental isolates, facilitating the differentiation between pathogenic and non-pathogenic acinetobacters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号