首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The malignancy of tumors depends on the biomechanical properties of cancer cells and their microenvironment, which enable cancer cells to migrate through the connective tissue, transmigrate through basement membranes and endothelial monolayers and form metastases in targeted organs. The current focus of cancer research is still based on biological capabilities such as molecular genetics and gene signaling, but these approaches ignore the mechanical nature of the invasion process of cancer cells. This review will focus on how structural, biochemical and mechanical properties of extracellular matrices (ECMs), and adjacent cells regulate the invasiveness of cancer cells. In addition, it presents how cancer cells create their own microenvironment by restructuring of the ECM and by interaction with stromal cells, which then further contribute to the progression of cancer disease. Finally, this review will point out that mechanical properties are a critical determinant for the efficiency of cancer cell invasion and the progression of cancer which might affect the future development of new cancer treatments.  相似文献   

2.

Background

The microenvironment plays a major role in the onset and progression of metastasis. Epithelial ovarian cancer (EOC) tends to metastasize to the peritoneal cavity where interactions within the microenvironment might lead to chemoresistance. Mesothelial cells are important actors of the peritoneal homeostasis; we determined their role in the acquisition of chemoresistance of ovarian tumours.

Methodology/Principal Findings

We isolated an original type of stromal cells, referred to as “Hospicells” from ascitis of patients with ovarian carcinosis using limiting dilution. We studied their ability to confer chemoresistance through heterocellular interactions. These stromal cells displayed a new phenotype with positive immunostaining for CD9, CD10, CD29, CD146, CD166 and Multi drug resistance protein. They preferentially interacted with epithelial ovarian cancer cells. This interaction induced chemoresistance to platin and taxans with the implication of multi-drug resistance proteins. This contact enabled EOC cells to capture patches of the Hospicells membrane through oncologic trogocytosis, therefore acquiring their functional P-gp proteins and thus developing chemoresistance. Presence of Hospicells on ovarian cancer tissue micro-array from patients with neo-adjuvant chemotherapy was also significantly associated to chemoresistance.

Conclusions/Significance

This is the first report of trogocytosis occurring between a cancer cell and an original type of stromal cell. This interaction induced autonomous acquisition of chemoresistance. The presence of stromal cells within patient''s tumour might be predictive of chemoresistance. The specific interaction between cancer cells and stromal cells might be targeted during chemotherapy.  相似文献   

3.
A multitude of biochemical signaling processes have been characterized that affect gene expression and cellular activity. However, living cells often need to integrate biochemical signals with mechanical information from their microenvironment as they respond. In fact, the signals received by shape alone can dictate cell fate. This mechanotrasduction of information is powerful, eliciting proliferation, differentiation, or apoptosis in a manner dependent upon the extent of physical deformation. The cells internal "prestressed" structure and its "hardwired" interaction with the extra-cellular matrix (ECM) appear to confer this ability to filter biochemical signals and decide between divergent cell functions influenced by the nature of signals from the mechanical environment. In some instances mechanical signaling through the tissue microenvironment has been shown to be dominant over genomic defects, imparting a normal phenotype on cells that otherwise have transforming genetic lesions. This mechanical control of phenotype is postulated to have a central role in embryogenesis, tissue physiology as well as the pathology of a wide variety of diseases, including cancer. We will briefly review studies showing physical continuity between the external cellular microenvironment and the interior of the cell nucleus. Newly characterized structures, termed nuclear envelope lamina spanning complexes (NELSC), and their interactions will be described as part of a model for mechanical transduction of extracellular cues from the ECM to the genome.  相似文献   

4.
Tumor-host interactions: the role of inflammation   总被引:1,自引:0,他引:1  
It is well established that interactions between tumor cells and the host tissue stroma play a key role in determining whether and how any given solid malignancy will develop. In most cases, tumor cells hijack stromal cell functions for their own benefit and ultimately dictate the rules of engagement to the host tissue microenvironment. However, the contribution of the different stromal cell components to tumor growth remains to be clarified. Because most solid tumors are accompanied by a local inflammatory response, it has long been thought that inflammation and carcinogenesis are related. If formal proof that cancer can be initiated by inflammation in the absence of exogenous carcinogens is still lacking, there is abundant evidence that the inflammatory response can play a central role in modulating tumor growth and progression. This review will discuss some of the mechanisms whereby inflammation can both enhance and inhibit tumor growth.  相似文献   

5.
Within the tumor microenvironment is a dynamic exchange between cancer cells and their surrounding stroma. This complex biologic system requires carefully designed models to understand the role of its stromal components in carcinogenesis, tumor progression, invasion, and metastasis. Secreted protein acidic and rich in cysteine (SPARC) is a prototypic matricellular protein at the center of this exchange. Two decades of basic science research combined with recent whole genome analyses indicate that SPARC is an important player in vertebrate evolution, normal development, and maintenance of normal tissue homeostasis. Therefore, SPARC might also play an important role in the tumor microenvironment. Clinical evidence indicates that SPARC expression correlates with tumor progression, but tightly controlled animal models have shown that the role of SPARC in tumor progression is dependent on tissue and tumor cell type. In this Prospectus, we review the current understanding of SPARC in the tumor microenvironment and discuss current and future investigations of SPARC and tumor-stromal interactions that require careful consideration of growth factors, cytokines, proteinases, and angiotropic factors that might influence SPARC activity and tumor progression.  相似文献   

6.

Background

The genetic diversity of cancer and the dynamic interactions between heterogeneous tumor cells, the stroma and immune cells present daunting challenges to the development of effective cancer therapies. Although cancer biology is more understood than ever, this has not translated into therapies that overcome drug resistance, cancer recurrence and metastasis. The future development of effective therapies will require more understanding of the dynamics of homeostatic dysregulation that drives cancer growth and progression.

Results

Cancer dynamics are explored using a model involving genes mediating the regulatory interactions between the signaling and metabolic pathways. The exploration is informed by a proposed genetic dysregulation measure of cellular processes. The analysis of the interaction dynamics between cancer cells, cancer associated fibroblasts, and tumor associate macrophages suggests that the mutual dependence of these cells promotes cancer growth and proliferation. In particular, MTOR and AMPK are hypothesized to be concurrently activated in cancer cells by amino acids recycled from the stroma. This leads to a proliferative growth supported by an upregulated glycolysis and a tricarboxylic acid cycle driven by glutamine sourced from the stroma. In other words, while genetic aberrations ignite carcinogenesis and lead to the dysregulation of key cellular processes, it is postulated that the dysregulation of metabolism locks cancer cells in a state of mutual dependence with the tumor microenvironment and deepens the tumor’s inflammation and immunosuppressive state which perpetuates as a result the growth and proliferation dynamics of cancer.

Conclusions

Cancer therapies should aim for a progressive disruption of the dynamics of interactions between cancer cells and the tumor microenvironment by targeting metabolic dysregulation and inflammation to partially restore tissue homeostasis and turn on the immune cancer kill switch. One potentially effective cancer therapeutic strategy is to induce the reduction of lactate and steer the tumor microenvironment to a state of reduced inflammation so as to enable an effective intervention of the immune system. The translation of this therapeutic approach into treatment regimens would however require more understanding of the adaptive complexity of cancer resulting from the interactions of cancer cells with the tumor microenvironment and the immune system.
  相似文献   

7.
Over the past decade, the study of metabolic abnormalities in cancer cells has risen dramatically. Cancer cells can thrive in challenging environments, be it the hypoxic and nutrient-deplete tumor microenvironment or a distant tissue following metastasis. The ways in which cancer cells utilize lipids are often influenced by the complex interactions within the tumor microenvironment and adjacent stroma. Adipocytes can be activated by cancer cells to lipolyze their triglyceride stores, delivering secreted fatty acids to cancer cells for uptake through numerous fatty acid transporters. Cancer-associated fibroblasts are also implicated in lipid secretion for cancer cell catabolism and lipid signaling leading to activation of mitogenic and migratory pathways. As these cancer-stromal interactions are exacerbated during tumor progression, fatty acids secreted into the microenvironment can impact infiltrating immune cell function and phenotype. Lipid metabolic abnormalities such as increased fatty acid oxidation and de novo lipid synthesis can provide survival advantages for the tumor to resist chemotherapeutic and radiation treatments and alleviate cellular stresses involved in the metastatic cascade. In this review, we highlight recent literature that demonstrates how lipids can shape each part of the cancer lifecycle and show that there is significant potential for therapeutic intervention surrounding lipid metabolic and signaling pathways.  相似文献   

8.
Breast cancer tissue consists of both carcinoma cells and stromal cells, and intratumoral stroma is composed of various cell types such as fibroblasts, adipocytes, inflammatory including lymphocytes and macrophage and lymphatic and blood capillaries including pericytes and endothelial cells. Recently, cell-cell communications or interactions among these cells have been considered to play an important role to cancer initiation, promotion, and progression. In particular, intratumoral fibroblasts are well known as cancer-associated fibroblast (CAF). CAF is considered to be different from normal fibroblasts in terms of promoting cancer progression through the cytokine signals. Carcinoma cell lines have contributed to the advancement of our understanding of cancer cell biology. Numerous researches have employed these carcinoma cell lines as a single- or mono-culture. However, it is also true that this mono-culture system cannot evaluate interactions between carcinoma and intratumoral stromal cells. Co-culture compositions of two different cell type of cancer tissues i.e., carcinoma cell lines and fibroblasts, were established in order to evaluate cell-cell interactions in these cancer microenvironment. This co-culture condition has the advantage of evaluating cell-cell interactions of cancer microenvironment. Therefore, in this review, we focused upon co-culture system and its application to understanding of various biological phenomenon as an ex vivo evaluation method of cancer microenvironment in breast cancer.  相似文献   

9.
Nerve fibers accompany blood and lymphatic vessels all over the body. An extensive amount of knowledge has been obtained with regard to tumor angiogenesis and tumor lymphangiogenesis, yet little is known about the potential biological effects of "neoneurogenesis". Cancer cells can exploit the advantage of the factors released by the nerve fibers to generate a positive microenvironment for cell survival and proliferation. At the same time, they can stimulate the formation of neurites by secreting neurotrophic factors and axon guidance molecules. The neuronal influence on the biology of a neoplasm was initially described several decades ago. Since then, an increasing amount of experimental evidence strongly suggests the existence of reciprocal interactions between cancer cells and nerves in humans. Moreover, researchers have been able to demonstrate a crosstalk between cancer cells and nerve fibers as a strategy for survival. Despite all these evidence, a lot remains to be done in order to clarify the role of neurotransmitters, neuropeptides, and their associated receptor-initiated signaling pathways in the development and progression of cancer, and response to therapy. A global-wide characterization of the neurotransmitters or neuropeptides present in the tumor microenvironment would provide insights into the real biological influences of the neuronal tissue on tumor progression. This review is intended to discuss our current understanding of neurosignaling in cancer and its potential implications on cancer prevention and therapy. The review will focus on the soluble factors released by cancer cells and nerve endings, their biological effects and their potential relevance in the treatment of cancer.  相似文献   

10.
11.
Recent advances in tumor biology have revealed that a detailed analysis of the complex interactions of tumor cells with their adjacent microenvironment (tumor stroma) is mandatory in order to understand the various mechanisms involved in tumor growth and the development of metastasis. The mutual interactions between tumor cells and cellular and non-cellular components (extracellular matrix = ECM) of the tumor microenvironment will eventually lead to a loss of tissue homeostasis and promote tumor development and progression. Thus, interactions of genetically altered tumor cells and the ECM on the one hand and reactive non-neoplastic cells on the other hand essentially control most aspects of tumorigenesis such as epithelial-mesenchymal-transition (EMT), migration, invasion (i.e. migration through connective tissue), metastasis formation, neovascularisation, apoptosis and chemotherapeutic drug resistance. In this mini-review we will focus on these issues that were recently raised by two review articles in CCS.  相似文献   

12.
Tumors arise from cells that have sustained genetic mutations resulting in deregulation of several of their normal growth-controlling mechanisms. Much of the research concerning the origins of cancer has focused on the genetic mutations within tumor cells, treating tumorigenesis as a cell-autonomous process governed by the genes carried by the tumor cells themselves. However, it is increasingly apparent that the stromal microenvironment in which the tumor cells develop profoundly influences many steps of tumor progression. In various experimental tumor models, the microenvironment affects the efficiency of tumor formation, the rate of tumor growth, the extent of invasiveness, and the ability of tumor cells to metastasize. In carcinomas, the influences of the microenvironment are mediated, in large part, by paracrine signaling between epithelial tumor cells and neighboring stromal fibroblasts. In this review, we summarize recent advances in understanding the paracrine signaling interactions between epithelial cancer cells and associated fibroblasts and examine the effects of these bidirectional interactions on various aspects of carcinoma formation. We note, however, that paracrine signaling between other cell types within the carcinomas, such as endothelial cells and inflammatory cells, may play equally important roles in tumor formation and we will refer to these heterotypic interactions where relevant.  相似文献   

13.
Metastasis is a major cause for cancer-related morbidity and mortality. Metastasis is a multistep process and due to its complexity, the exact cellular and molecular processes that govern metastatic dissemination and growth are still elusive. Live imaging allows visualization of the dynamic and spatial interactions of cells and their microenvironment. Solid tumors commonly metastasize to the lungs. However, the anatomical location of the lungs poses a challenge to intravital imaging. This protocol provides a relatively simple and quick method for ex vivo live imaging of the dynamic interactions between tumor cells and their surrounding stroma within lung metastasis. Using this method, the motility of cancer cells as well as interactions between cancer cells and stromal cells in their microenvironment can be visualized in real time for several hours. By using transgenic fluorescent reporter mice, a fluorescent cell line, injectable fluorescently labeled molecules and/or antibodies, multiple components of the lung microenvironment can be visualized, such as blood vessels and immune cells. To image the different cell types, a spinning disk confocal microscope that allows long-term continuous imaging with rapid, four-color image acquisition has been used. Time-lapse movies compiled from images collected over multiple positions and focal planes show interactions between live metastatic and immune cells for at least 4 hr. This technique can be further used to test chemotherapy or targeted therapy. Moreover, this method could be adapted for the study of other lung-related pathologies that may affect the lung microenvironment.  相似文献   

14.
15.
Osteopontin (OPN) is a secreted protein present in bodily fluids and tissues. It is subject to multiple post‐translational modifications, including phosphorylation, glycosylation, proteolytic cleavage and crosslinking by transglutamination. Binding of OPN to integrin and CD44 receptors regulates signalling cascades that affect processes such as adhesion, migration, invasion, chemotaxis and cell survival. A variety of cells and tissues express OPN, including bone, vasculature, kidney, inflammatory cells and numerous secretory epithelia. Normal physiological roles include regulation of immune functions, vascular remodelling, wound repair and developmental processes. OPN also is expressed in many cancers, and elevated levels in patients’ tumour tissue and blood are associated with poor prognosis. Tumour growth is regulated by interactions between tumour cells and their tissue microenvironment. Within a tumour mass, OPN can be expressed by both tumour cells and cellular components of the tumour microenvironment, and both tumour and normal cells may have receptors able to bind to OPN. OPN can also be found as a component of the extracellular matrix. The functional roles of OPN in a tumour are thus complex, with OPN secreted by both tumour cells and cells in the tumour microenvironment, both of which can in turn respond to OPN. Much remains to be learned about the cross‐talk between normal and tumour cells within a tumour, and the role of multiple forms of OPN in these interactions. Understanding OPN‐mediated interactions within a tumour will be important for the development of therapeutic strategies to target OPN.  相似文献   

16.
A small percentage of data obtained from animal/2D culture models can be translated to humans. Therefore, there is a need to using native tumour microenvironment mimicking models to improve preclinical screening and reduce this attrition rate. For this purpose, currently, the utilization of organoids is expanding. Tumour organoids can recapitulate tumour microenvironment that is including cancer cells and non-neoplastic host components. Indeed, tumour organoids, both phenotypically and genetically, resemble the tumour tissue that originated from it. The unique properties of the tumour microenvironment can significantly affect drug response and cancer progression. In this review, we will discuss about various organoid culture strategies for modelling the tumour immune microenvironment, their applications and advantages in cancer research such as testing cancer immunotherapeutics, developing novel approaches for personalized medicine, testing drug toxicity, drug screening, study cancer initiation and progression, and we will also review the limitations of organoid culture systems.  相似文献   

17.
  肿瘤转移包括一系列复杂的过程,主要涉及肿瘤细胞由原发部位脱离开始,到肿瘤细胞在其它转移部位——比如骨骼,生长增殖的多个关键性步骤.“种子和土壤学说”预示骨微环境中表达许多因子,吸引多种肿瘤细胞的迁移以及促进肿瘤的增殖.通过肿瘤细胞与其所处生长环境中的双向和动态的作用,促进肿瘤在骨骼中的发展.因此,骨微环境中产生的因子对肿瘤骨转移具有重要意义.本综述以前列腺癌为例,总结了肿瘤转移的机理研究概况,特别强调了目前有关肿瘤细胞与骨微环境之间相互作用研究的重要性,并提出了未来的研究方向  相似文献   

18.
Background/aimS100A8/A9 and myeloid cells in the tumor microenvironment play an important role in cancer invasion and progression, and the effect of tumor-infiltrated myofibroblasts on myeloid cells in the tumor microenvironment is relatively unknown. Accordingly, we investigated the role of myofibroblasts in the upregulation of S100A8/A9 as well as in the differentiation of myeloid cells in the colorectal cancer (CRC) microenvironment.Materials and methodsTo investigate the interactions among cancer cells, myofibroblasts, and inflammatory cells in the microenvironment of CRC, we used 10 CRC cell lines, 18CO cells and THP-1 cells, which were co-cultured with each other or cultured in conditioned media (CM) of other cells. Expression of S100A8/A9 was evaluated via Western blot, immunohistochemical staining and immunofluorescence. The secreted factors from the cell lines were analyzed using cytokine antibody array. Flow cytometry analysis was performed to analyze the differentiation markers of myeloid cells.Results18CO CM induced increased expression of S100A8/A9 in THP-1 cells. Increased expression of S100A8/A9 was noted in inflammatory cells of the peri- and intra-tumoral areas, along with myofibroblasts in colon cancer tissue. S100A8/A9-expressing inflammatory cells also exhibited CD68 expression in colon cancer tissue, and 18CO CM induced differentiation of THP-1 cells into myeloid-derived suppressor cells (MDSCs) or M2 macrophages expressing S100A8/A9. Significant amounts of IL-6 and IL-8 were detected in 18CO CM, compared to those in both controls and THP-1 CM, and tumor-infiltrated myofibroblasts expressed IL-8 in colon cancer tissue. Finally, neutralizing antibodies to IL-6 and IL-8 attenuated 18CO CM-induced increased expression of S100A8/A9.ConclusionsThe upregulation of S100A8/A9 in tumor-infiltrated myeloid cells could be triggered by IL-6 and IL-8 released from myofibroblasts, and myofibroblasts might induce the differentiation of myeloid cells into S100A8/9-expressing MDSCs or M2 macrophages in the CRC microenvironment.  相似文献   

19.
Bone is the most common site of breast cancer metastasis. Although it is widely accepted that the microenvironment influences cancer cell behavior, little is known about breast cancer cell properties and behaviors within the native microenvironment of human bone tissue.We have developed approaches to track, quantify and modulate human breast cancer cells within the microenvironment of cultured human bone tissue fragments isolated from discarded femoral heads following total hip replacement surgeries. Using breast cancer cells engineered for luciferase and enhanced green fluorescent protein (EGFP) expression, we are able to reproducibly quantitate migration and proliferation patterns using bioluminescence imaging (BLI), track cell interactions within the bone fragments using fluorescence microscopy, and evaluate breast cells after colonization with flow cytometry. The key advantages of this model include: 1) a native, architecturally intact tissue microenvironment that includes relevant human cell types, and 2) direct access to the microenvironment, which facilitates rapid quantitative and qualitative monitoring and perturbation of breast and bone cell properties, behaviors and interactions. A primary limitation, at present, is the finite viability of the tissue fragments, which confines the window of study to short-term culture. Applications of the model system include studying the basic biology of breast cancer and other bone-seeking malignancies within the metastatic niche, and developing therapeutic strategies to effectively target breast cancer cells in bone tissues.  相似文献   

20.
Stem cell niches in mammals   总被引:6,自引:0,他引:6  
Stem cells safeguard tissue homeostasis and guarantee tissue repair throughout life. The decision between self-renewal and differentiation is influenced by a specialized microenvironment called stem cell niche. Physical and molecular interactions with niche cells and orientation of the cleavage plane during stem cell mitosis control the balance between symmetric and asymmetric division of stem cells. Here we highlight recent progress made on the anatomical and molecular characterization of mammalian stem cell niches, focusing particularly on bone marrow, tooth and hair follicle. The knowledge of the regulation of stem cells within their niches in health and disease will be instrumental to develop novel therapies that target stem cell niches to achieve tissue repair and re-establish tissue homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号