首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
An expression is derived for the lipid-mediated intermolecular interaction between protein molecules embedded in a lipid bilayer. It is assumed that protein particles are accommodated by the bilayer, but they distort the lipids in some manner from their equilibrium protein-free configuration. We treat this situation by expanding the free energy density in the plane of the membrane as a Taylor series in some arbitrary parameter and its gradient. Minimization of the total membrane energy for a given particle configuration yields the interparticle interaction energy for that configuration. A test of the model is provided by measurement of the protein-protein pair distribution function from freeze-fracture micrographs of partially aggregated membranes. The measured functions can be simulated by adjustment of two parameters (a) a lipid correlation length that characterizes the distance over which a distortion of the bilayers is transmitted laterally through the bilayer, and (b) a term quantifying the energy of the protein-lipid interaction at the protein-lipid boundary. Correlation lengths obtained by fitting the calculated particle distribution functions to the data are found to be several nanometers. Protein-lipid interaction energies are of the order of a few kT.  相似文献   

2.
The role and mechanism of formation of lipid domains in a functional membrane have generally received limited attention. Our approach, based on the hypothesis that thermodynamic coupling between lipid-lipid and protein-lipid interactions can lead to domain formation, uses a combination of an experimental lipid bilayer model system and Monte Carlo computer simulations of a simple model of that system. The experimental system is a fluid bilayer composed of a binary mixture of phosphatidylcholine (PC) and phosphatidylserine (PS), containing 4% of a pyrene-labeled anionic phospholipid. Addition of the C2 protein motif (a structural domain found in proteins implicated in eukaryotic signal transduction and cellular trafficking processes) to the bilayer first increases and then decreases the excimer/monomer ratio of the pyrene fluorescence. We interpret this to mean that protein binding induces anionic lipid domain formation until the anionic lipid becomes saturated with protein. Monte Carlo simulations were performed on a lattice representing the lipid bilayer to which proteins were added. The important parameters are an unlike lipid-lipid interaction term and an experimentally derived preferential protein-lipid interaction term. The simulations support the experimental conclusion and indicate the existence of a maximum in PS domain size as a function of protein concentration. Thus, lipid-protein coupling is a possible mechanism for both lipid and protein clustering on a fluid bilayer. Such domains could be precursors of larger lipid-protein clusters ('rafts'), which could be important in various biological processes such as signal transduction at the level of the cell membrane.  相似文献   

3.
The scattering from the model membrane system, egg lecithin + myelin protein (N-2), has been analyzed by liquid diffraction methods. It is found that by manipulating the protein-lipid ratio, the scattering domains of the protein and lipid can be identified. The multilayer contribution can also be identified by its position and concentration behavior in both the intensity pattern and its Fourier transform. When the multilayer and protein components are subtracted, the phospholipid scattering and an interaction term are left: these two can be resolved by a reasonable assessment of their relative magnitude in the boundary region where they overlap. The interaction term can then be used to determine the most probably position of the protein in the membrane. The deconvoluted protein and lipid transforms can then be combined in the proper way to obtain the electron density profiles. The resolution of the interaction term is not yet complete, but a method for accomplishing this is discussed.  相似文献   

4.
Intensities of x-ray scattering from rabbit muscle sarcoplasmic reticulum membrane have been measured over the range of s = 0.05-0.25, at solvent densities varying between p0 = 0.335 and 0.389 electrons/A3. Analysis of the results shows agreement with the elements of structure deduced earlier by a different technique, based on the variation of the lipid-protein concentration ratio. In addition, the present work extends the analysis to allow isolation of the lipid contribution to the total scattering, from which a profile of the lipid electron density normal to the membrane face is evaluated. The scattering arising from electron correlations within the plane of the bilayer has also been identified.  相似文献   

5.
Purified F0F1 ATPase from Rhodospirillum rubrum FR1 has been incorporated into lipid vesicles from the partially deuterated phospholipid dimyristoylglycerophosphocholine (DMPC-D54). These proteoliposomes were able to carry out energy transducing reactions. The incorporation of the membrane protein was controlled by freeze fracture electron microscopy. A method for structural research of the membrane protein in its natural environment has been developed by means of neutron small angle scattering. Using the contrast variation technique, the lipid part of the proteoliposomes was matched by adding an appropriate amount of D2O to the solvent. Thus the neutron scattering profile of F0F1 ATPase incorporated into vesicles was separated from the neutron scattering of the liposome. F0F1 ATPase incorporated in a lipid bilayer, as well as the free enzyme, yields a radius of gyration of Rg = 6.0 +/- 0.1 nm which leads to an overall diameter of 15.5 nm. This result suggests that the monomeric form of F0F1 ATPase is incorporated in DMPC-D54 membranes at 20 degrees C.  相似文献   

6.
Deuterium Fourier transform nuclear magnetic resonance (NMR) spectra at 34 MHz (corresponding to a magnetic field strength of 5.2 T) have been obtained of a variety of protein-lipid systems containing specifically deuterated phospholipids. The following systems were investigated as a function of temperature: sarcoplasmic reticulum ATPase (ATP phosphohydrolase, EC 3.6.1.3) complexed with 1-myristoyl-2-(14,14,14-trideuteriomyristoyl)-sn-glycero-3-phosphocholine (DMPC-d3) or 1,2-bis(16,16,16-trideuteriopalmitoyl)-sn-glycero-3-phosphocholine (DPPC-k6); human brain lipophilin complexed with DPPC-d6 or 1,2-bis(6,6-dideuteriopalmitoyl)-sn-glycero-3-phosphocholine (DPPC-6,6-d4); beef brain myelin proteolipid apoprotein (PLA) reconstituted with DMPC labeled as CD2 (or CD3) at one or more of positions 3, 4, 6, 8, 10, 12, or 14 of the sn-2 chain. For purposes of comparison, spectra were also obtained for bilayers containing cholesterol (CHOL). The results show that proteins either disorder or have little effect on hydrocarbon chain order in membranes above the gel to liquid-crystal phase transition temperature (Tc) of the pure lipids. Cholesterol, however, causes a very large ordering of the hydrocarbon chains above Tc, but both cholesterol and protein prevent chain crystallization (by effectively disordering chain packing) immediately below Tc. No evidence for any ordered "boundary lipid" in association with protein was found above Tc, perhaps due to the rough nature of protein surfaces. Above Tc, exchange between free bilayer and protein associated lipid is fast on the time scale of the deuterium NMR experiment (greater than or similar to 10(3) s-1). We have also obtained proton-decoupled phosphorus-31 nuclear magnetic resonance spectra at 60.7 MHz (corresponding to a magnetic field strength of 3.5 T) of DMPC, DMPC-AT-Pase, and DMPC-CHOL complexes. The results indicate that ATPase and CHOL CAUSE SMALL DECREASES IN 31P chemical shielding anisotropies but that in addition ATPase causes a four- to fivefold increase in 31P spin-lattice and Carr-Purcell spin-spin relaxation rates, suggesting the possibility of polar group protein-lipid interaction leading to increased correlation times in the region of the lipid phosphate head group.  相似文献   

7.
We have developed a general model that relates the lateral diffusion coefficient of one isolated large intrinsic molecule (mol. wt. greater than or approximately 1000) in a phosphatidylcholine bilayer to the static lipid hydrocarbon chain order. We have studied how protein lateral diffusion can depend upon protein-lipid interactions but have not investigated possible non-specific contributions from gel-state lattice defects. The model has been used in Monte Carlo simulations or in mean-field approximations to study the lateral diffusion coefficients of Gramicidin S, the M-13 coat protein and glycophorin in dimyristoyl- and dipalmitoylphosphatidylcholine (DMPC and DPPC) bilayers as functions of temperature. Our calculated lateral diffusion coefficients for Gramicidin S and the M-13 coat protein are in good agreement with what has been observed and suggest that Gramicidin S is in a dimeric form in DMPC bilayers. In the case of glycophorin we find that the 'ice breaker' effect can be understood as a consequence of perturbation of the lipid polar region around the protein. In order to understand this effect is necessary that the protein hydrophilic section perturb the polar regions of at least approx. 24 lipid molecules, in good agreement with the numbers of 29-30 measured using 31P-NMR. Because of lipid-lipid interactions this effect extends itself out to four or five lipid layers away from the protein so that the hydrocarbon chains of between approx. 74 and approx. 108 lipid molecules are more disordered in the gel phase, so contributing less to the transition enthalpy, in agreement with the numbers of 80-100 deduced from differential scanning calorimetry (DSC). An understanding of the abrupt change in the diffusion coefficient at a temperature below the main bilayer transition temperature requires an additional mechanism. We propose that this change may be a consequence of a 'coupling-uncoupling' transition involving the protein hydrophilic section and the lipid polar regions, which may be triggered by the lipid bilayer pretransition. Our calculation of the average number of gauche bonds per lipid chain as a function of temperature and distance away from an isolated polypeptide or integral protein shows the extent of statically disordered lipid around such molecules. The range of this disorder depends upon temperature, particularly near the main transition.  相似文献   

8.
Five molecular dynamics simulations (total duration >25 ns) have been performed on the Escherichia coli outer membrane protease OmpT embedded in a dimyristoylphosphatidylcholine lipid bilayer. Globally the protein is conformationally stable. Some degree of tilt of the beta-barrel is observed relative to the bilayer plane. The greatest degree of conformational flexibility is seen in the extracellular loops. A complex network of fluctuating H-bonds is formed between the active site residues, such that the Asp210-His212 interaction is maintained throughout, whereas His212 and Asp83 are often bridged by a water molecule. This supports a catalytic mechanism whereby Asp83 and His212 bind a water molecule that attacks the peptide carbonyl. A configuration yielded by docking calculations of OmpT simulation snapshots and a model substrate peptide Ala-Arg-Arg-Ala was used as the starting point for an extended Huckel calculation on the docked peptide. These placed the lowest unoccupied molecular orbital mainly on the carbon atom of the central C=O in the scissile peptide bond, thus favoring attack on the central peptide by the water held by residues Asp83 and His212. The trajectories of water molecules reveal exchange of waters between the intracellular face of the membrane and the interior of the barrel but no exchange at the extracellular mouth. This suggests that the pore-like region in the center of OmpT may enable access of water to the active site from below. The simulations appear to reveal the presence of specific lipid interaction sites on the surface of the OmpT barrel. This reveals the ability of extended MD simulations to provide meaningful information on protein-lipid interactions.  相似文献   

9.
We have developed a general model that relates the lateral diffusion coefficient of one isolated large intrinsic molecule (mol. wt. ?1000) in a phosphatidylcholine bilayer to the static lipid hydrocarbon chain order. We have studied how protein lateral diffusion can depend upon protein-lipid interactions but have not investigated possible non-specific contributions from gel-state lattice defects. The model has been used in Monte Carlo simulations or in mean-field approximations to study the lateral diffusion coefficients of Gramicidin S, the M-13 coat protein and glycophorin in dimyristoyl- and dipalmitoylphosphatidylcholine (DMPC and DPPC) bilayers as functions of temperature. Our calculated lateral diffusion coefficients for Gramicidin S and the M-13 coat protein are in good agreement with what has been observed and suggest that Gramicidin S is in a dimeric form in DMPC bilayers. In the case of glycophorin we find that the ‘ice breaker’ effect can be understood as a consequence of perturbation of the lipid polar region around the protein. In order to understand this effect is is necessary that the protein hydrophilic section perturb the polar regions of at least approx. 24 lipid molecules, in good agreement with the numbers of 29–30 measured using 31P-NMR. Because of lipid-lipid interactions this effect extends itself out to four or five lipid layers away from the protein so that the hydrocarbon chains of between approx. 74 and approx. 108 lipid molecules are more disordered in the gel phase, so contributing less to the transition enthalpy, in agreement with the numbers of 80–100 deduced from differential scanning calorimetry (DSC). An understanding of the abrupt change in the diffusion coefficient at a temperature below the main bilayer transition temperature requires an additional mechanism. We propose that this change may be a consequence of a ‘coupling-uncoupling’ transition involving the protein hydrophilic section and the lipid polar regions, which may be triggered by the lipid bilayer pretransition. Our calculation of the average number of gauche bonds per lipid chain as a function of temperature and distance away from an isolated polypeptide or integral protein shows the extent of statically disordered lipid around such molecules. The range of this disorder depends upon temperature, particularly near the main transition.  相似文献   

10.
alpha-Sarcin is a single polypeptide chain protein which exhibits antitumour activity by degrading the larger ribosomal RNA of tumour cells. We describe the interaction of a alpha-sarcin with lipid model systems. The protein specifically interacts with negatively-charged phospholipid vesicles, resulting in protein-lipid complexes which can be isolated by ultracentrifugation in a sucrose gradient. alpha-Sarcin causes aggregation of such vesicles. The extent of this interaction progressively decreases when the molar ratio of phosphatidylcholine increases in acidic vesicles. The kinetics of the vesicle aggregation induced by the protein have been measured. This process is dependent on the ratio of alpha-sarcin present in the protein-lipid system. A saturation plot is observed from phospholipid vesicles-protein titrations. The saturating protein/lipid molar ratio is 1:50. The effect produced by the antitumour protein on the lipid vesicles is dependent on neither the length nor the degree of unsaturation of the phospholipid acyl chain. However, the aggregation is dependent on temperature, being many times higher above the phase transition temperature of the corresponding phospholipid than below it. The effects of pH and ionic strength have also been considered. An increase in the ionic strength does not abolish the protein-lipid interaction. The effect of pH may be related to conformational changes of the protein. Binding experiments reveal a strong interaction between alpha-sarcin and acidic vesicles, with Kd = 0.06 microM. The peptide bonds of the protein are protected against trypsin hydrolysis upon binding to acidic vesicles. The interaction of the protein with phosphatidylglycerol vesicles does not modify the phase transition temperature of the lipid, although it decreases the amplitude of the change of fluorescence anisotropy associated to the co-operative melting of 1,6-diphenyl-1,3,5-hexatriene (DPH)-labelled vesicles. The results are interpreted in terms of the existence of both electrostatic and hydrophobic components for the interaction between phospholipid vesicles and the antitumour protein.  相似文献   

11.
Evidence has been found for the existence water at the protein-lipid hydrophobic interface of the membrane proteins, gramicidin and apocytochrome C, using two related fluorescence spectroscopic approaches. The first approach exploited the fact that the presence of water in the excited state solvent cage of a fluorophore increases the rate of decay. For 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-palmitoyl-2-[[2-[4-(6-phenyl-trans-1,3,5- hexatrienyl)phenyl]ethyl]carbonyl]-3-sn-PC (DPH-PC), where the fluorophores are located in the hydrophobic core of the lipid bilayer, the introduction of gramicidin reduced the fluorescence lifetime, indicative of an increased presence of water in the bilayer. Since a high protein:lipid ratio was used, the fluorophores were forced to be adjacent to the protein hydrophobic surface, hence the presence of water in this region could be inferred. Cholesterol is known to reduce the water content of lipid bilayers and this effect was maintained at the protein-lipid interface with both gramicidin and apocytochrome C, again suggesting hydration in this region. The second approach was to use the fluorescence enhancement induced by exchanging deuterium oxide (D2O) for H2O. Both the fluorescence intensities of trimethylammonium-DPH, located in the lipid head group region, and of the gramicidin intrinsic tryptophans were greater in a D2O buffer compared with H2O, showing that the fluorophores were exposed to water in the bilayer at the protein-lipid interface. In the presence of cholesterol the fluorescence intensity ratio of D2O to H2O decreased, indicating a removal of water by the cholesterol, in keeping with the lifetime data.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
The affinity of ionized fatty acids for the Na,K-ATPase is used to determine the transmembrane profile of water penetration at the protein-lipid interface. The standardized intensity of the electron spin echo envelope modulation (ESEEM) from 2H-hyperfine interaction with D2O is determined for stearic acid, n-SASL, spin-labeled systematically at the C-n atoms throughout the chain. In both native Na,K-ATPase membranes from shark salt gland and bilayers of the extracted membrane lipids, the D2O-ESEEM intensities of fully charged n-SASL decrease progressively with position down the fatty acid chain toward the terminal methyl group. Whereas the D2O intensities decrease sharply at the n = 9 position in the lipid bilayers, a much broader transition region in the range n = 6 to 10 is found with Na,K-ATPase membranes. Correction for the bilayer population in the membranes yields the intrinsic D2O-intensity profile at the protein-lipid interface. For positions at either end of the chains, the D2O concentrations at the protein interface are greater than in the lipid bilayer, and the positional profile is much broader. This reveals the higher polarity, and consequently higher intramembrane water concentration, at the protein-lipid interface. In particular, there is a significant water concentration adjacent to the protein at the membrane midplane, unlike the situation in the bilayer regions of this cholesterol-rich membrane. Experiments with protonated fatty acid and phosphatidylcholine spin labels, both of which have a considerably lower affinity for the Na,K-ATPase, confirm these results.  相似文献   

14.
Fluorescence probe data using 1,6-diphenyl-1,3,5-hexatriene for various concentrations of intrinsic molecules (cholesterol, gramicidin A amd cytochrome oxidase) within fluid lipid bilayers have been examined. The polarization value increases with increasing concentration of intrinsic molecule and then approaches a limiting value. Empirical curve-fitting of the experimental data, change of polarization with concentration, shows that each system can be fitted approximately by an exponential curve. A theory has been constructed based upon the assumption that only one intrinsic molecule need be adjacent to a fluorescent probe molecule to affect its motion drastically. The change in probe motion then depends upon the probability p of all positions next to a lipid chain being free of intrinsic molecules. The value of the probability p has been calculated and it is shown that (formula: see text) depending on whether the intrinsic molecule spans the lipid bilayer or not. The approximation p = e-Mx gives a good fit to the data for all x, thereby explaining the observed phenomenological fit. The fluorescent probe data is interpreted to show that protein-protein contacts increase as the intrinsic protein concentration increases within the lipid bilayer. An apparent dichotomy between the results from the fluorescence probe and from the deuterium magnetic resonance is explained in terms of a dominant affect on the probe being its hindrance to motion by interaction with the intrinsic molecule (protein) whilst individual C2H2 groups of the chain may exhibit greater disorder.  相似文献   

15.
The purified Na+,Mg2(+)-ATPase from the Acholeplasma laidlawii B plasma membrane was reconstituted with dimyristoyl phosphatidylcholine and the lipid thermotropic phase behavior of the proteoliposomes formed was investigated by differential scanning calorimetry. The effect of this ATPase on the host lipid phase transition is markedly dependent on the amount of protein incorporated. At low protein/lipid ratios, the presence of increasing quantities of ATPase in the proteoliposomes increases the temperature and enthalpy while decreasing the cooperativity of the dimyristoyl phosphatidylcholine gel to liquid-crystalline phase transition. At higher protein/lipid ratios, the incorporation of increasing amounts of this enzyme does not further alter the temperature and cooperativity of the phospholipid chain-melting transition, but progressively and markedly decreases the transition enthalpy. Plots of lipid phase transition enthalpy versus protein concentration suggest that at the higher protein/lipid ratios each ATPase molecule removes approximately 1000 dimyristoyl phosphatidylcholine molecules from participation in the cooperative gel to liquid-crystalline phase transition of the bulk lipid phase. These results indicate that this integral transmembrane protein interacts in a complex, concentration-dependent manner with its host phospholipid and that such interactions involve both hydrophobic interactions with the lipid bilayer core and electrostatic interactions with the lipid polar head groups at the bilayer surface.  相似文献   

16.
Isenbarger TA  Krebs MP 《Biochemistry》2001,40(39):11923-11931
To determine the strength of noncovalent interactions that stabilize a membrane protein complex, we have developed an in vitro method for quantifying the dissociation of the bacteriorhodopsin (BR) lattice, a naturally occurring two-dimensional crystal. A lattice suspension was titrated with a short- and long-chain phosphatidylcholine mixture to dilute BR within the lipid bilayer. The fraction of BR in the lattice form as a function of added lipid was determined by visible circular dichroism spectroscopy and fit with a cooperative self-assembly model to obtain a critical concentration for lattice assembly. Critical concentration values of wild-type and mutant proteins were used to calculate the change in lattice stability upon mutation (DeltaDeltaG). By using this method, a series of mutant proteins was examined in which residues at the BR-BR interface were replaced with smaller amino acids, either Ala or Gly. Most of the mutant lattices were destabilized, with DeltaDeltaG values of 0.2-1.1 kcal/mol at 30 degrees C, consistent with favorable packing of apolar residues in the membrane. One mutant, I45A, was stabilized by approximately 1.0 kcal/mol, possibly due to increased lipid entropy. The DeltaDeltaG values agreed well with previous in vivo measurements, except in the case of I45A. The ability to measure the change in stability of mutant protein complexes in a lipid bilayer may provide a means of determining the contributions of specific protein-protein and protein-lipid interactions to membrane protein structure.  相似文献   

17.
The affinity of ionized fatty acids for the Na,K-ATPase is used to determine the transmembrane profile of water penetration at the protein-lipid interface. The standardized intensity of the electron spin echo envelope modulation (ESEEM) from 2H-hyperfine interaction with D2O is determined for stearic acid, n-SASL, spin-labeled systematically at the C-n atoms throughout the chain. In both native Na,K-ATPase membranes from shark salt gland and bilayers of the extracted membrane lipids, the D2O-ESEEM intensities of fully charged n-SASL decrease progressively with position down the fatty acid chain toward the terminal methyl group. Whereas the D2O intensities decrease sharply at the n = 9 position in the lipid bilayers, a much broader transition region in the range n = 6 to 10 is found with Na,K-ATPase membranes. Correction for the bilayer population in the membranes yields the intrinsic D2O-intensity profile at the protein-lipid interface. For positions at either end of the chains, the D2O concentrations at the protein interface are greater than in the lipid bilayer, and the positional profile is much broader. This reveals the higher polarity, and consequently higher intramembrane water concentration, at the protein-lipid interface. In particular, there is a significant water concentration adjacent to the protein at the membrane midplane, unlike the situation in the bilayer regions of this cholesterol-rich membrane. Experiments with protonated fatty acid and phosphatidylcholine spin labels, both of which have a considerably lower affinity for the Na,K-ATPase, confirm these results.  相似文献   

18.
From analysis of the position and width of the diffuse maximum from X-ray scattering on hydrocarbon chains of phospholipid molecules, the average distance between neighbour chains in a bilayer and the values of interaction (correlation) radia were estimated. Comparison with the results of other methods applied shows that the cluster model of molecule packing in lipid bilayers explains the experimental data in the best way. The minimal dimensions of the clusters, average areas per molecule and approximate fraction of molecules in the clusters were estimated.  相似文献   

19.
The interaction between proteins and membranes is of great interest in biomedical and biotechnological research for its implication in many functional and dysfunctional processes. We present an experimental study on the interaction between model membranes and alpha-lactalbumin (α-La). α-La is widely studied for both its biological function and its anti-tumoral properties. We use advanced fluorescence microscopy and spectroscopy techniques to characterize α-La-membrane mechanisms of interaction and α-La-induced modifications of membranes when insertion of partially disordered regions of protein chains in the lipid bilayer is favored. Moreover, using fluorescence lifetime imaging, we are able to distinguish between protein adsorption and insertion in the membranes. Our results indicate that, upon addition of α-La to giant vesicles samples, protein is inserted into the lipid bilayer with rates that are concentration-dependent. The formation of heterogeneous hybrid protein-lipid co-aggregates, paralleled with protein conformational and structural changes, alters the membrane structure and morphology, leading to an increase in membrane fluidity.  相似文献   

20.
P J Spooner  A Watts 《Biochemistry》1991,30(16):3880-3885
31P NMR measurements were conducted to determine the structural and chemical environment of beef heart cardiolipin when bound to cytochrome c. 31P NMR line shapes infer that the majority of lipid remains in the bilayer state and that the average conformation of the lipid phosphate is not greatly affected by binding to the protein. An analysis of the spin-lattice (T1) relaxation times of hydrated cardiolipin as a function of temperature describes a T1 minimum at around 25 degrees C which leads to a correlation time for the phosphates in the lipid headgroup of 0.71 ns. The relaxation behavior of the protein-lipid complex was markedly different, showing a pronounced enhancement in the phosphorus spin-lattice relaxation rate. This effect of the protein increased progressively with increasing temperature, giving no indication of a minimum in T1 up to 75 degrees C. The enhancement in lipid phosphorus T1 relaxation was observed with protein in both oxidation states, being somewhat less marked for the reduced form. The characteristics of the T1 effects and the influence of the protein on other relaxation processes determined for the lipid phosphorus (spin-spin relaxation and longitudinal relaxation in the rotating frame) point to a strong paramagnetic interaction from the protein. A comparison with the relaxation behavior of samples spinning at the "magic angle" was also consistent with this mechanism. The results suggest that cytochrome c reversibly denatures on complexation with cardiolipin bilayers, such that the electronic ground state prevailing in the native structure of both oxidized and reduced protein can convert to high-spin states with greater magnetic susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号