首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Appropriate combination of specific inhibitors of electron transport in the cytochrome bc1 segment of the respiratory chain of Saccharomyces cerevisiae allows the rapid resolution of three spectral forms of mitochondrial cytochrome b. (1) Addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) to aerobic yeast submitochondrial particles preincubated with cyanide and mucidin in the presence of NADH reveals cytochrome b-561.5. (2) Addition of funiculosin to aerobic yeast submitochondrial particles preincubated with cyanide, mucidin and n-heptylhydroxyquinolineN-oxide in the presence of NADH reveals cytochrome b-558 independently of cytochrome b-561.5 and cytochrome b-565. (3) Specific resolution of cytochrome b-565 can be obtained either by addition of mucidin to aerobic submitochondrial particles preincubated with cyanide, DCMU and NADH, or by addition of antimycin plus an oxygen pulse to NADH-reduced particles, preincubated with cyanide, in the presence of ascorbate plus TMPD, or by addition of antimycin A in the presence of oxidized TMPD to aerobically NADH-reduced particles.  相似文献   

2.
The cytochrome b of sonic particles of mitochondria or the isolated segment of the respiratory chain containing cytochromes b and c1 (Complex III) was 80–95% reducible with Q1H2 (ubiquinol-5) in the presence of antimycin plus selected electron acceptors added externally (i.e., oxidants which reacted preferentially with respiratory components on the oxygen side of the point of inhibition by antimycin) such as oxygen or ferricyanide depending on whether sonic particles or isolated Complex III was used. In contrast, less than 40% of the cytochrome b was reduced by Q1H2 in the absence of either antimycin or the external electron acceptor. In the presence of antimycin ascorbate or mercaptoethanol, which behaved as mild reducing agents, completely inhibited the reduction of cytochrome b by Q1H2.  相似文献   

3.
Myxothiazol inhibited oxygen consumption of beef heart mitochondria in the presence and absence of 2,4-dinitrophenol, as well as NADH oxidation by submitochondrial particles. The doses required for 50% inhibition were 0.58 mol myxothiazol/mol cytochrome b for oxygen consumption of beef heart mitochondria, and 0.45 mol/mol cytochrome b for NADH oxidation by submitochondrial particles. Difference spectra with beef heart mitochondria and with cell suspensions of Saccharomyces cerevisiae revealed that myxothiazol blocked the electron transport within the cytochrome b-c1 segment of the respiratory chain. Myxothiazol induced a spectral change in cytochrome b which was different from and independent of the shift induced by antimycin. Myxothiazol did not give the extra reduction of cytochrome b typical for antimycin. Studies on the effect of mixtures of myxothiazol and antimycin on the inhibition of NADH oxidation indicated that the binding sites of the two inhibitors are not identical.  相似文献   

4.
The new antibiotic stigmatellin, obtained from the myxobacterium Stigmatella aurantiaca, was found to block the electron flow in the respiratory chain of bovine heart submitochondrial particles at the site of the cytochrome b-c1 segment. Its inhibitory potency was identical with that of antimycin and myxothiazol, and like these antibiotics, stigmatellin caused a shift in the spectrum of reduced cytochrome b. Difference spectroscopic studies with the three inhibitors in various combinations indicated that the binding site of stigmatellin was different from that of antimycin, but more or less identical with that of myxothiazol. Experiments with 14 synthesized derivatives of stigmatellin showed that good inhibitory activity can be expected only if the side chain was kept relatively lipophilic, and the keto and the hydroxy groups of the chromone system were left intact.  相似文献   

5.
Myxothiazol inhibited oxygen consumption of beef heart mitochondria in the presence and absence of 2,4-dinitrophenol, as well as NADH oxidation by submitochondrial particles. The doses required for 50% inhibition were 0.58 mol myxothiazol/mol cytochrome b for oxygen consumption of beef heart mitochondria, and 0.45 mol/mol cytochrome b for NADH oxidation by submitochondrial particles. Difference spectra with beef heart mitochondria and with cell suspensions of Saccharomyces cerevisiae revealed that myxothiazol blocked the electron transport within the cytochrome b-c1 segment of the respiratory chain. Myxothiazol induced a spectral change in cytochrome b which was different from and independent of the shift induced by antimycin. Myxothiazol did not give the extra reduction of cytochrome b typical for antimycin. Studies on the effect of mixtures of myxothiazol and antimycin on the inhibition of NADH oxidation indicated that the binding sites of the two inhibitors are not identical.  相似文献   

6.
7.
1. Two allelic mutants of Saccharomyces cerevisiae with a deficiency in the biosynthesis of ubiquinone have been isolated. The properties of one particular mutant strain were investigated. Submitochondrial particles of this strain contain maximally 3% of the amount of ubiquinone in wild-type particles; the amounts of other components of the respiratory chain are essentially normal. 2. The respiratory rates of mutant cells, mitochondria and submitochondrial particles are low with ubiquinone-dependent substrates, but are restored to normal levels by addition of Q-1; the restored respiration is antimycin sensitive. Intact cells and mitochondria show respiratory control both in the absence and presence of Q-1. 3. The NADH:Q-1 oxidoreductase of submitochondrial particles of the mutant followspseudo first-order kinetics in [Q-1]. QH2-1 inhibits competitively with respect to Q-1, the Ki for QH2-1 being equal to the Km for Q-1. 4. Succinate dehydrogenase in both wild-type and mutant submitochondrial particles can be activated by NADH. 5. The turnover number of succinate dehydrogenase in the mutant, measured with phenazine methosulphate as primary electron acceptor, is about one-half that of wild-type particles. The turnover numbers measured with Q-1 as electron acceptor are about the same in the two types of particles. 6. The kinetics of redox changes in cytochrome b, in the presence of antimycin and oxygen, are distinctly different in the mutant and wild-type particles. They indicate that ubiquinone plays an important role in the phenomenon of the increased reducibility of cytochrome b induced by antimycin plus oxygen.  相似文献   

8.
Incubation of submitochondrial particles with relatively low concentrations of ethanol (20–100 mm) or acetaldehyde (1–10 mm) produces alterations in the electron paramagnetic resonance spectra of the iron-sulfur centers in the NADH dehydrogenase segments of the respiratory chain. The iron-sulfur centers in the NADH dehydrogenase region are most sensitive to both ethanol and acetaldehyde, in comparison to the iron-sulfur centers in succinate dehydrogenase and the cytochrome b-c region. Centers N-3, 4, N-5, 6 and N-1b are affected after relatively short incubation periods (3–30 min) while center N-2 shows considerable sensitivity over somewhat longer incubations (20–90 min). The most ethanol-sensitive center in the succinate dehydrogenase region of the respiratory chain is high potential iron-sulfur protein-type center S-3. Potentiometric analysis shows that these alterations are not due to simple changes in the redox state caused by addition of dissolved oxygen. Changes in the electron paramagnetic resonance spectra can be correlated with decreased rates of oxidation of NADH and, to a lesser extent, succinate in both ethanol- and acetaldehyde-treated submitochondrial particles.  相似文献   

9.
Chronic ethanol feeding to rats produces changes in hepatic mitochondria which persist in the absence of ethanol metabolism. The integrity of isolated mitochondria is well preserved, as evidenced by unchanged activities of latent, Mg2+- and dinitrophenol-stimulated ATPase activity, and unaltered permeability to NADH. With succinate or ascorbate as substrates, oxygen uptake by mitochondria from ethanol-fed rats was decreased compared to pair-fed controls. The decrease was comparable under state 4 or state 3 conditions, or in the presence of an uncoupler. However, with the NAD+-dependent substrates, ADP-stimulated oxygen consumption (state 3) was decreased to a greater extent than state 4 or uncoupler-stimulated oxygen consumption in mitochondria from ethanol-fed rats. This suggests that the decrease in energy-dependent oxygen consumption at site I may be superimposed upon damage to the respiratory chain. Using NAD+-dependent substrates (glutamate, α-ketoglutarate or β-hydroxybutyrate) the respiratory control ratio and the PO ratio of oxidative phosphorylation were significantly decreased in mitochondria isolated from the livers of rats fed ethanol. By contrast, when succinate or ascorbate served as the electron donor these functions were unchanged. The rate of phosphorylation is decreased 70% with the NAD+-dependent substrates because of a decreased flux of electrons, as well as a lower efficiency of oxidative phosphorylation. With succinate and ascorbate as substrates, the rate of phosphorylation is decreased 20–30%, owing to a decreased flux of electrons. These data suggest the possibility that, in addition to effects on the respiratory chain, energy-coupling site I may be damaged by ethanol feeding. Energy-dependent Ca2+ uptake, supported by either substrate oxidation or ATP hydrolysis, was inhibited by chronic ethanol feeding.Concentrations of acetaldehyde (1–3 mm) which inhibited phosphorylation associated with the oxidation of NAD+-dependent substrates had no effect on that of succinate or ascorbate. Many of the effects of chronic ethanol feeding on mitochondrial functions are similar to those produced by acetaldehyde in vitro.  相似文献   

10.
The problem of the resolution and reconstitution of the inner mitochondrial membrane has been approached at three levels. (1) Starting with phosphorylating submitochondrial particles, a "resolution from without" can be achieved by stripping of surface components. The most extensive resolution was recently obtained with the aid of silicotungstate. Such particles require for oxidative phosphorylation the addition of several coupling factors as well as succinate dehydrogenase. (2) Starting with submitochondrial particles that have been degraded by trypsin and urea a resolution of the inner membrane proper containing an ATPase has been achieved. These experiments show that at least five components are required for the reconstitution of an oligomycin-sensitive ATPase: a particulate component, F 1, Mg++, phospholipids, and Fc. Morphologically, the reconstituted ATPase preparations resemble submitochondrial particles. (3) Starting with intact mitochondria individual components of the oxidation chain have been separated from each other. The following components were required for the reconstitution of succinoxidase: succinate dehydrogenase, cytochrome b\, cytochrome c 1, cytochrome c, cytochrome oxidase, phospholipids and Q 10. The reconstituted complex had properties similar to those of phosphorylating submitochondrial particles; i.e., the oxidation of succinate by molecular oxygen was highly sensitive to antimycin.  相似文献   

11.
(1) In agreement with Eisenbach and Gutman (Eisenbach, M. and Gutman, M. (1975) Eur. J. Biochem. 52, 107–116) the reduction of cytochrome b in beef-heart submitochondrial particles by succinate in the presence of antimycin was found to be biphasic, the relative amounts of fast and slow phases being dependent on the redox state of a component located on the oxygen side of the antimycin block. (2) HQNO in a concentration sufficiently large to saturate the specific antimycin- and HQNO-binding sites can substitute for antimycin in these experiments. (3) The rate of the slow phase of the reduction of cytochrome b is decreased under anaerobic conditions and after pretreatment with 2,3-dimercaptopropanol (BAL). (4) In the presence of antimycin and cyanide, cytochrome b-562 is, to some extent, preferentially reduced in the rapid phase and b-566 in the slow phase. (5) The previously proposed regulatory effects of redox-sensitive components X and Y on the redox level and reduction kinetics, respectively, of cytochrome b are ascribed to the role of the Fe-S protein, when it is oxidized, in producing the reductant of cytochrome b by oxidation of QH2, and by the fact that when QH2 is bound to it, the reduced Fe-S protein cannot be oxidized by its natural oxidant, cytochrome c1.  相似文献   

12.
The Δ9-desaturase system in liver microsome from rats treated chronically with ethanol was studied. Stearoyl-CoA desaturase activity decreased by 80% and palmitoyl-CoA desaturase activity was not detectable in microsomes from ethanol-fed rats, while activities of electron transport components such as NADH-cytochrome c and NADH-ferricyanide reductases remained unchanged. However, chronic ethanol administration resulted in an adaptive induction of the activity of NADPH-cytochrome c reductase and the contents of cytochrome b5 and P-450. The activity of the terminal component (cyanide-sensitive factor; CSF) of the desaturase system was greatly depressed by ethanol treatment. The NADH/NAD ratio in microsomes of ethanol-fed rats increased over 2-fold. These results suggest that, during chronic ethanol ingestion, decreased activities of Δ9-desaturases are due mainly to a decreased content of the terminal component of the desaturase system.  相似文献   

13.
14.
Male rats were administered an ethanol-containing diet for 31 days during which time they demonstrated fatty liver. Mitochondria and submitochondrial particles were prepared from their livers (ethanol mitochondria, ethanol submitochondrial particles) and from their pair-fed partners (control mitochondria, control submitochondrial particles). The H+/coupling site ratio was not significantly different in ethanol and control mitochondria with succinate as electron donor. A 13% decrease in the H+/coupling site ratio was observed in ethanol mitochondria, however, when β-hydroxybutyrate was used as substrate. The rate of ATP-Pi exchange was decreased significantly in both ethanol mitochondria and submitochondrial particles as compared to control preparations. These observations demonstrate ethanol-elicited decreases in energy conservation in the site I region of the electron transport chain and in the activity of the ATP synthetase complex.  相似文献   

15.
Summary  Rubroskyrin, a modified bisanthraquinone pigment from an yellow rice moldPenicillium islandicum Sopp, was examined for its redox-interaction with the mitochondrial respiratory chain by using rat liver submitochondrial particles (SMP) and was compared with luteoskyrin and rugulosin. Rubroskyrin showed a redox interaction with the NAD-linked respiratory chain of SMP, promoting NADH oxidase in the presence of rotenone, a specific inhibitor to coupling site I of the respiratory chain. Rubroskyrin-mediated NADH oxidase was not inhibited by antimycin A and cyanide, inhibitors to coupling sites II and III, respectively, indicating a generation of an electron transport shunt from a rotenone-insensitive site of NADH dehydrogenase (complex I) to dissolved oxygen. An electrontransport shunt to cytochromec oxidase from complex I was also observed in the experiment with cytochromec and antimycin A. Rubroskyrin did not interact with succinate-linked respiratory chain. Such enzymatic redox response which generates electron transport shunt was not detected for luteoskyrin and rugulosin in the present study.  相似文献   

16.
Generation of a membrane potential in the respiratory chain-deficient particles of beef heart mitochondria has been studied. For detection of membrane potential, phenyl dicarbaundecaborane (PCB,) and anilinonaphthalene sulphonate (ANS) probes were used. The respiratory chain-deficient submitochondrial particles were prepared after Arion and Racker (E-SMP), the procedure including complete disappearance of membrane structures and subsequent reconstitution of membrane vesicles as judged by the electron microscopy study. E-SMP were found to be deficient in cytochromesa,a 3 and transhydrogenase, the cytochromeb,c 1 andc content being lowered. Addition of NADH, succinate and tetramethyl-p-phenylenediamine+ascorbate did not induce either any oxygen consumption or membrane potential formation. Treatment of E-SMP with NADPH+NAD+ or with NADH+CoQ0 did not entail generation of membrane potential, in contrast to that of parent, pyrophosphate submitochondrial particles (PP-SMP).E-SMP displayed an oligomycin-sensitive ATPase activity which could be increased by reconstitution of E-SMP with coupling factor F1. Addition of ATP resulted in an uptake of PCB and enhancement of ANS fluorescence, the facts testifying to the formation of the membrane potential with plus inside E-SMP. Membrane potential formation was arrested by oligomycin, rutamycin, and uncouplers. Addition of respiratory chain inhibitors (antimycin+rotenone+ cyanide), complete reduction of respiratory carriers by dithionite and oxidation by ferricyanide were without effect on ATP-supported formation of membrane potential in E-SMP. It was concluded that utilization of ATP energy for the membrane potential generation does not depend on the state of the respiratory carriers and can be demonstrated under the conditions when none of redox chain coupling sites were functioning.Abbreviations PCB phenyl dicarbaundecaborane - ANS anilinonaphthalene sulfonate - E-SMP the respiratory chain-deficient submitochondrial particles - PP-SMP pyrophosphate submitochondrial particles  相似文献   

17.
Attempts to solubilize active ubiquinol: cytochrome c reductase, cytochrome b-c1 complex, from the submitochondrial particles from sweet potato root tissue ended in failure because all detergents tested caused inactivation of this enzyme complex. Consequently, the complex was isolated with the content of cytochrome b as the marker for purification after solubilization with deoxycholate though it was inactive. Deoxycholate had no effect on two ±-bands at 555 and 558 nm but caused a blue shift of an ±-band at 563 nm in the reduced-minus-oxidized difference spectrum of the submitochondrial particles at low temperature. The purified complex exhibited the same difference spectra at low and room temperatures as the submitochondrial particles in the presence of deoxycholate, which suggests that the complex has three (at least two) cytochrome b components with different spectroscopic properties and that the apparent molar ratio of cytochrome b to c1 is 1.5. The purified complex consisted of eight subunits: I, 51 kDa; II, 49kDa; III, 33kDa; IV, 32 kDa; V, 27 kDa; VI, 17 kDa; and VII and VIII, 10 kDa. Subunits III and IV were cytochrome c1 and b, respectively.  相似文献   

18.
In the presence of ascorbate, hexaamineruthenium mediates rapid reduction of cytochrome b-562 in submitochondrial particles but not in mitochondria. The reaction is obsreved in the combined presence of antimycin (or funiculosin) and myxothiazol, which implies direct interaction of Ru(NH3)2+6 with b cytochrome(s). We assume that contrary to previous conclusions (Case and Leigh (1976) Biochem. J., 160, 769-783) redox centre of at least one of the oxidized cytochromes b, most probably of b-562, is exposed to the M-aqueous phase.  相似文献   

19.
The goal of this study was to examine the state of hepatocyte mitochondrial respiratory chain of rats with toxic hepatitis induced by CCl4 and ethanol. Oxygen consumption by hepatocytes and mitochondria was determined. Endogenous oxygen consumption by pathological hepatocytes was 1.3-fold higher compared with control. Rotenone resulted in 27% suppression of respiration by pathological hepatocytes whereas 2,4-dinitrophenol produced a 1.4-fold increase of respiration. States 3 and 4 of mitochondrial respiration with malate and glutamate were found to be higher as compared to control. State dinitrophenol and state 3 respirations were similar within every group of animals when being tested with malate and glutamate or succinate. Cytochrome c oxidase activity in hepatitis was 1.8-fold higher compared with control. Simvastatin administration resulted in a decrease in hepatocyte endogenous respiration in hepatitis. The presented data lead to the assumption that the increased oxygen consumption by the respiratory chain of pathological mitochondria to be linked mainly with the altered function of complex I.  相似文献   

20.
Male rats developed fatty liver after being fed on an ethanol-containing diet for 31 days. Liver mitochondria from these animals catalysed ATP synthesis at a slower rate when compared with mitochondria from pair-fed control rats (control mitochondria), and demonstrated lowered respiratory control with succinate as substrate, owing to a decrease in the State-3 respiratory rate. Respiration in the presence of uncoupler was comparable in mitochondria from both groups of rats. Translocation of both ATP and ADP was decreased in mitochondria from ethanol-fed rats, with ADP uptake being lowered more dramatically by ethanol feeding. Parameters influencing adenine nucleotide translocation were investigated in mitochondria from ethanol-fed rats. Experiments performed suggested that lowered adenine nucleotide translocation in these mitochondria is not the result of inhibition of the translocase by either long-chain acyl-CoA derivatives or unesterified fatty acids. Analysis of endogenous adenine nucleotides in these mitochondria revealed lowered ATP concentrations, but no decrease in total adenine nucleotides. In experiments where the endogenous ATP in these mitochondria was shifted to higher concentrations by incubation with oxidizable substrates or defatted bovine serum albumin, the rate of ADP translocation was increased, with a linear correlation being observed between endogenous ATP concentrations and the rate of ADP translocation. The depressed ATP concentration in mitochondria from ethanol-fed rats suggests that the ATP synthetase complex is replenishing endogenous ATP at a slower rate. The lowered ATPase activity of the ATP synthetase observed in submitochondrial particles from ethanol-fed animals suggests a decrease in the function of the synthetase complex. A decrease in the rate of ATP synthesis in mitochondria from ethanol-fed rats is sufficient to explain the decreased ADP translocation and State-3 respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号