首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The changes in the number of the starter microorganisms Lb. delbrueckii subsp. bulgaricus and Str. thermophiluswere followed in frozen-stored Kashkaval cheese made from cow’s milk. Kashkaval samples of various aging times were produced industrially, frozen at T=−16 °C and stored at T=−10 to −12 °C for 12 months. It was found that the number of Lb. delbrueckiisubsp. bulgaricus and Str. thermophilusdecreased considerably during frozen storage. The decrease was more substantial for Lb. delbrueckiisubsp. bulgaricus, which was evidence for its greater sensitivity to the impact of low temperatures. The aging time of Kashkaval did not influence the changes in the starter culture during frozen storage but is important for its amount in the product aged after defrosting. There was an increase in the Str. thermophilus: Lb. delbrueckiisubsp. bulgaricus ratio in samples with shorter aging time subjected to frozen storage and aged after defrosting. The changes in the starter culture in frozen stored Kashkaval cheese can be controlled by an appropriate combination of the two factors: aging time and period of frozen storage.  相似文献   

2.
The ability of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus administered in yogurt to survive the passage through the upper gastrointestinal tract was investigated with Göttingen minipigs that were fitted with ileum T-cannulas. After ingestion of yogurt containing viable microorganisms, ileostomy samples were collected nearly every hour beginning 3 h after food uptake. Living L. delbrueckii subsp. bulgaricus and S. thermophilus were detected in the magnitude of 106 to 107 per gram of intestinal contents (wet weight) in all animals under investigation. A calculation of the minimum amount of surviving bacteria that had been administered is presented. Total DNA extracted from ileostomy samples was subjected to PCR, which was species specific for L. delbrueckii and S. thermophilus and subspecies specific for L. delbrueckii subsp. bulgaricus. All three bacterial groups could be detected by PCR after yogurt uptake but not after uptake of a semisynthetic diet. One pig apparently had developed an endogenous L. delbrueckii flora. When heat-treated yogurt was administered, L. delbrueckii was detected in all animals. S. thermophilus or L. delbrueckii subsp. bulgaricus was not detected, indicating that heat-inactivated cells and their DNAs had already been digested and their own L. delbrueckii flora had been stimulated for growth.  相似文献   

3.
In the present study, the relationship between exopolysaccharide production and cholesterol removal rates of five strains of Lactobacillus delbrueckii subsp. bulgaricus isolated from home‐made yoghurt was studied. Test strains were selected according to their exopolysaccharide production capacity. Influence of different bile concentrations on cholesterol removal was investigated. It was confirmed that B3, ATCC 11842 and G11 strains which produce high amounts of exopolysaccharide (211, 200 and 159 mg/l, respectively) were able to remove more cholesterol from the medium compared to those that produce low amounts of exopolysaccharide (B2, A13). The highest cholesterol removal (31%) was observed by strain L. delbrueckii subsp. bulgaricus B3, producing a high amount of exopolysaccharide, in 3 mg/ml bile concentration. Cholesterol removal by resting and dead cells was investigated and it was found to be 4%–14% and 3%–10%, respectively. Cholesterol removal by immobilized and free cells of the B3 strain was studied and it was determined that immobilized cells are more effective. Influence of cholesterol on exopolysaccharide production has also been tested and it was found that cholesterol increased the production of EPS. The results indicated that: (i) there is a correlation between cholesterol removal and EPS production; and (ii) L. delbrueckii subsp. bulgaricus B3 is regarded as a suitable candidate probiotic and adjunct culture.  相似文献   

4.
Four different strains ofLactobacillus delbrueckii subsp.bulgaricus (Ss1 and Yop12) andStreptococcus salivarius subsp.thermophilus (Ss2 and Yop9) were isolated from two different yogurt sources in Argentina. In medium containing different carbon sources: lactose, fructose, sucrose or glucose plus fructose, the growth of a mixed culture (Yop12+Ss2) shows stimulation ofS. thermophilus and inhibition ofL. bulgaricus with respect to pure cultures. Both microorganisms in mixed culture grew less well on glucose plus galactose. However, in medium with glucose or galactose, both microorganisms were stimulated.  相似文献   

5.
The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti-inflammatory activities.  相似文献   

6.
Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412T, which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains.  相似文献   

7.
A decrease in the content of ochratoxin A (OA) was observed in milk samples fermented by yoghurt bacteria and bifidobacteria. OA was added to the milk before fermentation at a rate of 0.05–1.5 mg/L. No residues of OA were found in samples containing 0.05 and 0.1 mg/L of OA, fermented byS. salivarius subsp.thermophilus, L. delbrueckii subsp.bulgaricus andB. bifidum. Yoghurt bacteria (S. salivarius subsp.thermophilus andL. delbrueckii subsp.bulgaricus) were the most effective since no residues were detected even in fermented samples containing originally 0.5 mg/L OA.  相似文献   

8.
Pure and mixed controlled-pH batch cultures of Streptococcus salivarius subsp. thermophilus 404 and Lactobacillus delbrueckii subsp. bulgaricus 398 have been conducted. The characteristics of growth and acidification and the productivity of the cultures were compared. During the mixed cultures, the growth characteristics revealed a pronounced stimulation of S. thermophilus whereas L. bulgaricus metabolism was not significantly improved. The final total population was 1.4 to 4.9 higher than in pure cultures. The acidification characteristics were not enhanced by the mixed culture conditions. The productivity of mixed cultures was 1.7 to 2.4 times higher as compared to an equivalent mixing of pure cultures.Correspondence to: C. Béal  相似文献   

9.
Summary Genetic determinants of the Muc+ character were investigated in two ropy strains,Lactobacillus delbrueckii ssp.bulgaricus 201 andL. casei ssp.casei NCIB 4114, which secrete a large amount of slime in culture media. Plasmid DNA analysis revealed the presence of two plasmids (4.5 and 2.3 Mdal) inL. casei ssp.casei, whileL. delbrueckii ssp.bulgaricus was plasmid free, suggesting a chromosomal location of Muc+ character in this strain. Curing experiments carried out onL. casei ssp.casei NCIB 4114 indicated a correlation between the Muc+ phenotype and the 4.5 Mdal plasmid.  相似文献   

10.
A yogurt culture (Streptococcus thermophilus 15HA + Lactobacillus delbrueckii subsp. bulgaricus 2-11) was studied in conditions of aerobic batch fermentation (10–40% dissolved oxygen in milk). The growth and acidification of S. thermophilus 15HA were stimulated at 20% oxygen concentration and the lactic acid process in a mixed culture was shortened by 1 h (2.5 h for the aerobic culture and 3.5 h for the anaerobic mixed culture). Streptococcus thermophilus 15HA oxygen tolerance was significantly impaired at oxygen concentrations in the milk above 30%. Though S. thermophilus 15HA was able to overcome to some extent the impact of high oxygen concentration (40%), the lactic acid produced was insufficient to coagulate the milk casein (4.0 g lactic acid l−1 in the mixed culture and 3.8 g lactic acid l−1 in the pure culture). A dramatic decrease in the viable cell count of L. delbrueckii subsp. bulgaricus 2-11 in the pure and mixed cultures was recorded at 30% dissolved oxygen. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
While plasmids are very commonly associated with the majority of the lactic acid bacteria, they are only very rarely associated with Lactobacillus delbrueckii, with only four characterized to date. In this study, the complete sequence of a native plasmid, pDOJ1, from a strain of Lactobacillus delbrueckii subsp. bulgaricus was determined. It consisted of a circular DNA molecule of 6,220 bp with a G+C content of 44.6% and a characteristic ori and encoded six open reading frames (ORFs), of which functions could be predicted for three—a mobilization (Mob) protein, a transposase, and a fused primase-helicase replication protein. Comparative analysis of pDOJ1 and the other available L. delbrueckii plasmids (pLBB1, pJBL2, pN42, and pLL1212) revealed a very similar organization and amino acid identities between 85 and 98% for the putative proteins of all six predicted ORFs from pDOJ1, reflecting a common origin for L. delbrueckii plasmids. Analysis of the fused primase-helicase replication gene found a similar fused organization only in the theta replicating group B plasmids from Streptococcus thermophilus. This observation and the ability of the replicon to function in S. thermophilus support the idea that the origin of plasmids in L. delbrueckii was likely from S. thermophilus. This may reflect the close association of these two species in dairy fermentations, particularly yogurt production. As no vector based on plasmid replicons from L. delbrueckii has previously been constructed, an Escherichia coli-L. delbrueckii shuttle cloning vector, pDOJ4, was constructed from pDOJ1, the p15A ori, the chloramphenicol resistance gene of pCI372, and the lacZ polylinker from pUC18. This cloning vector was successfully introduced into E. coli, L. delbrueckii subsp. bulgaricus, S. thermophilus, and Lactococcus lactis. This shuttle cloning vector provides a new tool for molecular analysis of Lactobacillus delbrueckii and other lactic acid bacteria.  相似文献   

12.
Ability of industrially relevant species of thermophilic lactobacilli strains to hydrolyze proteins from animal (caseins and β-lactoglobulin) and vegetable (soybean and wheat) sources, as well as influence of peptide content of growth medium on cell envelope-associated proteinase (CEP) activity, was evaluated. Lactobacillus delbrueckii subsp. lactis (CRL 581 and 654), L. delbrueckii subsp. bulgaricus (CRL 454 and 656), Lactobacillus acidophilus (CRL 636 and 1063), and Lactobacillus helveticus (CRL 1062 and 1177) were grown in a chemically defined medium supplemented or not with 1 % Casitone. All strains hydrolyzed mainly β-casein, while degradation of αs-caseins was strain dependent. Contrariwise, κ-Casein was poorly degraded by the studied lactobacilli. β-Lactoglobulin was mainly hydrolyzed by CRL 656, CRL 636, and CRL 1062 strains. The L. delbrueckii subsp. lactis strains, L. delbrueckii subsp. bulgaricus CRL 656, and L. helveticus CRL 1177 degraded gliadins in high extent, while the L. acidophilus and L. helveticus strains highly hydrolyzed soy proteins. Proteinase production was inhibited by Casitone, the most affected being the L. delbrueckii subsp. lactis species. This study highlights the importance of proteolytic diversity of lactobacilli for rational strain selection when formulating hydrolyzed dairy or vegetable food products.  相似文献   

13.
We developed a chemically defined medium (CDM) containing lactose or glucose as the carbon source that supports growth and exopolysaccharide (EPS) production of two strains of Lactobacillus delbrueckii subsp. bulgaricus. The factors found to affect EPS production in this medium were oxygen, pH, temperature, and medium constituents, such as orotic acid and the carbon source. EPS production was greatest during the stationary phase. Composition analysis of EPS isolated at different growth phases and produced under different fermentation conditions (varying carbon source or pH) revealed that the component sugars were the same. The EPS from strain L. delbrueckii subsp. bulgaricus CNRZ 1187 contained galactose and glucose, and that of strain L. delbrueckii subsp. bulgaricus CNRZ 416 contained galactose, glucose, and rhamnose. However, the relative proportions of the individual monosaccharides differed, suggesting that repeating unit structures can vary according to specific medium alterations. Under pH-controlled fermentation conditions, L. delbrueckii subsp. bulgaricus strains produced as much EPS in the CDM as in milk. Furthermore, the relative proportions of individual monosaccharides of EPS produced in pH-controlled CDM or in milk were very similar. The CDM we developed may be a useful model and an alternative to milk in studies of EPS production.  相似文献   

14.
Lactic acid bacteria such as Lactobacillus helveticus, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus, L. acidophilus, and L. casei related taxa which are widely used as starter or probiotic cultures can be identified by amplified ribosomal DNA restriction analysis (ARDRA). The genetic discrimination of the related species belonging to these groups was first obtained by PCR amplifications by using group-specific or species-specific 16S rDNA primers. The numerical analysis of the ARDRA patterns obtained by using CfoI, HinfI, Tru9I, and ScrFI was an efficient typing tool for identification of species of the L. acidophilus and L. casei complex. ARDRA by using CfoI was a reliable method for differentiation of L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. Finally, strains ATCC 393 and ATCC 15820 exhibited unique ARDRA patterns with CfoI and Tru9I restriction enzymes as compared with the other strains of L. casei, L. paracasei, and L. rhamnosus. Received: 30 August 2000 / Accepted: 2 October 2000  相似文献   

15.
Summary The influence of various storage solutions and temperature (4°C and 25°C) on viability ofStreptococcus salivarius subsp.thermophilus andLactobacillusdelbrueckii subsp.bulgaricus entrapped in κ-carrageenan-locust bean gum mixed gel beads was studied. The immobilized strains could be stored at 4°C in all storage solutions studied for at least 14 and 11 days respectively before counts decreased to 105c.f.u./mL, which was considered to be the practical limit for their use as inoculum in a fermentation process. The most effective storage solutions for preserving cell viability at 4°C were NaCl, glycerol and sorbitol solutions forS. thermophilus, and PO4 buffer and sorbitol solutions forL. bulgaricus. At 25°C,S. thermophilus could be stored for over 14 days in all solutions except glycerol, andL. bulgaricus for 4 days in 10% sorbitol.  相似文献   

16.
The growth of Lactobacillus delbrueckii subsp. bulgaricus (L. delbrueckii subsp. bulgaricus) on lactose was altered upon aerating the cultures by agitation. Aeration caused the bacteria to enter early into stationary phase, thus reducing markedly the biomass production but without modifying the maximum growth rate. The early entry into stationary phase of aerated cultures was probably related to the accumulation of hydrogen peroxide in the medium. Indeed, the concentration of hydrogen peroxide in aerated cultures was two to three times higher than in unaerated ones. Also, a similar shift from exponential to stationary phase could be induced in unaerated cultures by adding increasing concentrations of hydrogen peroxide. A significant fraction of the hydrogen peroxide produced by L. delbrueckii subsp. bulgaricus originated from the reduction of molecular oxygen by NADH catalyzed by an NADH:H2O2 oxidase. The specific activity of this NADH oxidase was the same in aerated and unaerated cultures, suggesting that the amount of this enzyme was not directly regulated by oxygen. Aeration did not change the homolactic character of lactose fermentation by L. delbrueckii subsp. bulgaricus and most of the NADH was reoxidized by lactate dehydrogenase with pyruvate. This indicated that NADH oxidase had no (or a very small) energetic role and could be involved in eliminating oxygen.  相似文献   

17.
We developed a chemically defined medium called milieu proche du lait (MPL), in which 22 Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) strains exhibited growth rates ranging from 0.55 to 1 h−1. MPL can also be used for cultivation of other lactobacilli and Streptococcus thermophilus. The growth characteristics of L. bulgaricus in MPL containing different carbon sources were determined, including an initial characterization of the phosphotransferase system transporters involved. For the 22 tested strains, growth on lactose was faster than on glucose, mannose, and fructose. Lactose concentrations below 0.4% were limiting for growth. We isolated 2-deoxyglucose-resistant mutants from strains CNRZ397 and ATCC 11842. CNRZ397-derived mutants were all deficient for glucose, fructose, and mannose utilization, indicating that these three sugars are probably transported via a unique mannose-specific-enzyme-II-like transporter. In contrast, mutants of ATCC 11842 exhibited diverse phenotypes, suggesting that multiple transporters may exist in that strain. We also developed a protein labeling method and verified that exopolysaccharide production and phage infection can occur in MPL. The MPL medium should thus be useful in conducting physiological studies of L. bulgaricus and other lactic acid bacteria under well controlled nutritional conditions.  相似文献   

18.
Response surface methodology (RSM) was used to optimize a protective medium for enhancing the cell viability of Lactobacillus delbrueckii subsp. bulgaricus LB14 during freeze-drying. Using a previous Plackett–Burman design, it was found that sucrose, glycerol, sorbitol and skim milk were the most effective freeze-drying protective agents for L. bulgaricus LB14. A full factorial central composite design was applied to determine the optimum levels of these four protective agents. The experimental data allowed the development of an empirical model (P<0.0001) describing the inter-relationships between the independent and dependent variables. By solving the regression equation, and analyzing the response surface contour and surface plots, the optimal concentrations of the agents were determined as: sucrose 66.40 g/L, glycerol 101.20 g/L, sorbitol 113.00 g/L, and skim milk 130.00 g/L. L. bulgaricus LB14 freeze-dried in this medium obtained a cell viability of up to 86.53%.  相似文献   

19.
The cumulative effect of peptidase and protease activities associated with cells of Streptococcus thermophilus (ST) and Lactobacillus delbrueckii subsp. bulgaricus (LB) was evaluated on the milk protein-based antimicrobial peptides casocidin and isracidin. Reaction mixtures of casocidin or isracidin and nonproliferating mid-log cells of these essential yogurt starter cultures were individually incubated for up to 4 h at pH 4.5 and 7.0, and samples removed at various time points were analyzed by reverse phase-high performance liquid chromatography (RP-HPLC) and MALDI-TOF/TOF-MS. Both casocidin and isracidin remained largely unchanged following exposure to cell suspensions of ST or LB strains at pH 4.5. Casocidin was extensively degraded by both ST and LB strains at pH 7.0, whereas isracidin remained largely intact after incubation for 4 h with ST strains but was degraded by exposure to LB strains. The results showed the feasibility of using the bovine casein-based peptides casocidin and isracidin as food grade antimicrobial supplements to impart fermented dairy foods additional protection against bacterial contamination. The structural integrity and efficacy of these biodefensive peptides may be preserved by timing their addition near the end of the fermentation of yogurt-like dairy foods (at or below pH 4.5), when conditions for bacterial proteolytic activity become unfavorable.  相似文献   

20.
Summary The optimal temperature, pH and incubation time for production of exopolysaccharide (EPS) by Lactobacillus delbruckii subsp. bulgaricus and Streptococcus thermophilus strains in MRS and M17 media, respectively, were determined. In all strains, the temperature and incubation time for EPS production were 45 °C and 18 h, respectively. At 45 °C, L. delbruckiisubsp. bulgaricus B3 and G12 and S. thermophilus W22 strains produced 263, 238 and 127 mg/l, respectively. At 18 h, B3, G12 and W22 strains produced 220, 152 and 120 mg/l, respectively. While the pH for highest EPS production by L. delbruckii subsp. bulgaricus strains was 6.2 (in B3 strain: 211 mg/l, in G12 strain: 175 mg/l), for highest EPS production byS. thermophilus strain it was 6.8 (114 mg/l).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号