共查询到20条相似文献,搜索用时 15 毫秒
1.
CP1 domain in Escherichia coli leucyl-tRNA synthetase is crucial for its editing function 总被引:2,自引:0,他引:2
The amino acid discrimination by aminoacyl-tRNA synthetase is achieved through two sifting steps; amino acids larger than the cognate substrate are rejected by a "coarse sieve", while the reaction products of amino acids smaller than the cognate substrate will go through a "fine sieve" and be hydrolyzed. This "double-sieve" mechanism has been proposed for IleRS, a class I aminoacyl-tRNA synthetase. In this study, we created LeuRS-B, a mutant leucyl-tRNA synthetase from Escherichia coli with a duplication of the peptide fragment from Met328 to Pro368 (within its CP1 domain). This mutant has 50% of the leucylation activity of the wild-type enzyme and has the same ability to discriminate noncognate amino acids in the first step of the reaction. However, LeuRS-B can catalyze mischarging of tRNA(Leu) by methionine or isoleucine, suggesting that it is impaired in the ability to edit incorrect products. Wild-type leucyl-tRNA synthetase can edit the mischarged tRNA(Leu) made by LeuRS-B, while a separated CP1 domain cannot. These data suggest that the CP1 domain of leucyl-tRNA synthetase is crucial to the second editing sieve and that CP1 needs the structural context in leucyl-tRNA synthetase to fulfill its editing function. 相似文献
2.
Leucyl-tRNA synthetase (LeuRS) has an insertion domain, called connective peptide 2 (CP2), either directly preceding or following the editing domain (CP1 domain), depending on the species. The global structures of the CP2 domains from all LeuRSs are similar. Although the CP1 domain has been extensively explored to be responsible for hydrolysis of mischarged tRNALeu, the role of the CP2 domain remains undefined. In the present work, deletion of the CP2 domain of Giardia lamblia LeuRS (GlLeuRS) showed that the CP2 domain is indispensable for amino acid activation and post-transfer editing and that it contributes to LeuRS-tRNALeu binding affinity. In addition, its functions are conserved in both eukaryotic/archaeal and prokaryotic LeuRSs from G. lamblia, Pyrococcus horikoshii (PhLeuRS), and Escherichia coli (EcLeuRS). Alanine scanning and site-directed mutagenesis assays of the CP2 domain identified several residues that are crucial for its various functions. Data from the chimeric mutants, which replaced the CP2 domain of GlLeuRS with either PhLeuRS or EcLeuRS, showed that the CP2 domain of PhLeuRS but not that of EcLeuRS can partially restore amino acid activation and post-transfer editing functions, suggesting that the functions of the CP2 domain are dependent on its location in the primary sequence of LeuRS. 相似文献
3.
Karkhanis VA Boniecki MT Poruri K Martinis SA 《The Journal of biological chemistry》2006,281(44):33217-33225
Aminoacyl-tRNA synthetases are a family of enzymes that are responsible for translating the genetic code in the first step of protein synthesis. Some aminoacyl-tRNA synthetases have editing activities to clear their mistakes and enhance fidelity. Leucyl-tRNA synthetases have a hydrolytic active site that resides in a discrete amino acid editing domain called CP1. Mutational analysis within yeast mitochondrial leucyl-tRNA synthetase showed that the enzyme has maintained an editing active site that is competent for post-transfer editing of mischarged tRNA similar to other leucyl-tRNA synthetases. These mutations that altered or abolished leucyl-tRNA synthetase editing were introduced into complementation assays. Cell viability and mitochondrial function were largely unaffected in the presence of high levels of non-leucine amino acids. In contrast, these editing-defective mutations limited cell viability in Escherichia coli. It is possible that the yeast mitochondria have evolved to tolerate lower levels of fidelity in protein synthesis or have developed alternate mechanisms to enhance discrimination of leucine from non-cognate amino acids that can be misactivated by leucyl-tRNA synthetase. 相似文献
4.
Amino acid toxicities of Escherichia coli that are prevented by leucyl-tRNA synthetase amino acid editing 下载免费PDF全文
Leucyl-tRNA synthetase (LeuRS) has evolved an editing function to clear misactivated amino acids. An Escherichia coli-based assay was established to identify amino acids that compromise the fidelity of LeuRS and translation. Multiple nonstandard as well as standard amino acids were toxic to the cell when LeuRS editing was inactivated. 相似文献
5.
The aminoacyl-tRNA synthetases covalently link transfer RNAs to their cognate amino acids. Some of the tRNA synthetases have employed an editing mechanism to ensure fidelity in this first step of protein synthesis. The amino acid editing active site for Escherichia coli leucyl-tRNA synthetase resides within the CP1 domain that folds discretely from the main body of the enzyme. A portion of the editing active site is lined with conserved threonines. Previously, we identified one of these threonine residues (Thr(252)) as a critical amino acid specificity factor. On the basis of X-ray crystal structure information, two other nearby threonine residues (Thr(247) and Thr(248)) were hypothesized to interact with the editing substrate near its cleavage site. Single mutations of either of these conserved threonine residues had minimal effects on amino acid editing. However, double mutations that deleted the hydroxyl group from the neighboring threonine residues abolished amino acid editing activity. We propose that these threonine residues, which are also conserved in the homologous isoleucyl-tRNA synthetase and valyl-tRNA synthetase editing active sites, play a central role in amino acid editing. It is possible that they collaborate in stabilizing the transition state. 相似文献
6.
A large insertion domain called CP1 (connective peptide 1) present in class Ia aminoacyl-tRNA synthetases is responsible for post-transfer editing. LeuRS (leucyl-tRNA synthetase) from Aquifex aeolicus and Giardia lamblia possess unique 20 and 59 amino acid insertions respectively within the CP1 that are crucial for editing activity. Crystal structures of AaLeuRS-CP1 [2.4 ? (1 ?=0.1 nm)], GlLeuRS-CP1 (2.6 ?) and the insertion deletion mutant AaLeuRS-CP1Δ20 (2.5 ?) were solved to understand the role of these insertions in editing. Both insertions are folded as peripheral motifs located on the opposite side of the proteins from the active-site entrance in the CP1 domain. Docking modelling and site-directed mutagenesis showed that the insertions do not interact with the substrates. Results of molecular dynamics simulations show that the intact CP1 is more dynamic than its mutant devoid of the insertion motif. Taken together, the data show that a peripheral insertion without a substrate-binding site or major structural role in the active site may modulate catalytic function of a protein, probably from protein dynamics regulation in two respective LeuRS CP1s. Further results from proline and glycine mutational analyses intended to reduce or increase protein flexibility are consistent with this hypothesis. 相似文献
7.
Aminoacyl-tRNA synthetases (aaRSs) strictly discriminate their cognate amino acids. Some aaRSs accomplish this via proofreading and editing mechanisms. Mursinna and coworkers recently reported that substituting a highly conserved threonine (T252) with an alanine within the editing domain of Escherichia coli leucyl-tRNA synthetase (LeuRS) caused LeuRS to cleave its cognate aminoacylated leucine from tRNA(Leu) (Mursinna et al., Biochemistry 2001;40:5376-5381). To achieve atomic level insight into the role of T252 in LeuRS and the editing reaction of aaRSs, a series of molecular modeling studies including homology modeling and automated docking simulations were carried out. A 3D structure of E. coli LeuRS was constructed via homology modeling using the X-ray structure of Thermus thermophilus LeuRS as a template because the E. coli LeuRS structure is not available from X-ray or NMR studies. However, both the X-ray T. thermophilus and homology-modeled E. coli structures were used in our studies. Amino acid binding sites in the proposed editing domain, which is also called the connective polypeptide 1 (CP1) domain, were investigated by automated docking studies. The root mean square deviation (RMSD) for backbone atoms between the X-ray and homology-modeled structures was 1.18 A overall and 0.60 A for the editing (CP1) domain. Automated docking studies of a leucine ligand into the editing domain were performed for both structures: homology structure of E. coli LeuRS and X-ray structure of T. thermophilus LeuRS for comparison. The results of the docking studies suggested that there are two possible amino acid binding sites in the CP1 domain for both proteins. The first site lies near a threonine-rich region that includes the highly conserved T252 residue, which is important for amino acid discrimination. The second site is located in a flexible loop region surrounded by residues E292, A293, M295, A296, and M298. The important T252 residue is at the bottom of the first binding pocket. 相似文献
8.
Leucyl-tRNA synthetase (LeuRS) is a class I enzyme, which houses its aminoacylation active site in a canonical core that is defined by a Rossmann nucleotide binding fold. In addition, many LeuRSs bear a unique polypeptide insert comprised of about 50 amino acids located just upstream of the conserved KMSKS sequence. The role of this leucine-specific domain (LS-domain) remains undefined. We hypothesized that this domain may be important for substrate recognition in aminoacylation and/or amino acid editing. We carried out a series of deletion mutations and chimeric swaps within the leucine-specific domain of Escherichia coli. Our results support that the leucine-specific domain is critical for aminoacylation but not required for editing activity. Kinetic analysis determined that deletion of the LS-domain primarily impacts kcat. Because of its proximity to the aminoacylation active site, we propose that this domain interacts with the tRNA during amino acid activation and/or tRNA aminoacylation. Although the leucine-specific domain does not appear to be important to the editing complex, it remains possible that it aids the dynamic translocation process that moves tRNA from the aminoacylation to the editing complex. 相似文献
9.
Escherichia coli leucyl-tRNA synthetase (LeuRS) has a large connecting polypeptide (CP1) inserted into its active site. It was demonstrated that the peptide bond between E292–A293 was crucial for the aminoacylation activity of E. coli LeuRS. To investigate the effect of E292 on the function of Escherichia coli LeuRS, E292 was mutated to K, F, S, D, Q and A. These mutations at 292 did not change the specific activity of the amino acid activation reaction. Though the conformational change of these mutants was not detected in CD, their aminoacylation activities were impaired to varying extents. The mutation of E to K decreased the aminoacylation activity to the largest extent. Analysis of the Km values of these mutants for the three substrates showed that the E292 was not involved in the binding of leucine and that all mutants had stronger binding with ATP. 相似文献
10.
A highly conserved threonine residue marks the amino acid binding pocket within the editing active site of leucyl-tRNA synthetases (LeuRSs). It is essential to substrate specificity for the Escherichia coli enzyme in that it blocks the cognate leucine amino acid from binding in the hydrolytic editing active site. We combined mutagenesis and computational approaches to elucidate the molecular role of the critical side chain of this threonine residue. Removal of the terminal methyl group of the threonine side chain by replacement with serine yielded a mutant LeuRS that hydrolyzes Leu-tRNA(Leu). Substitution of valine for the conserved threonine conferred similar activities to the wild-type enzyme. However, an additional substitution within the editing active site suggested synergistic interactions with the conserved threonine site that significantly affected amino acid editing. On the basis of our combined biochemical and computational data, we propose that the threonine 252 side chain not only sterically hinders the cognate charged leucine from binding for hydrolysis but also plays a critical role in maintaining an active site geometry that is required for the fidelity of LeuRS. 相似文献
11.
The fidelity of translation is dependent on the specificity of the aminoacyl-tRNA synthetases (aaRSs). The aaRSs that activate the hydrophobic amino acids leucine, isoleucine, and valine employ a proofreading mechanism that hydrolyzes noncognate aminoacyl adenylates and misaminoacylated tRNAs. Discrimination between structurally similar amino acids by these AARSs is believed to operate by a double-sieve principle, wherein a separate editing domain governs hydrolysis on the basis of the size and hydrophilicity of the amino acid side chain. Leucyl-tRNA synthetase (LeuRS) relies on its editing function to correct misaminoacylation of tRNA(Leu) by isoleucine and methionine. Thr252 of Escherichia coli LeuRS has been shown previously to be important in defining the size of the editing cavity. Here we report the isolation and characterization of three LeuRS mutants with point mutations at this position (T252Y, T252L, and T252F). The proofreading activity of the synthetase is significantly impaired when an amino acid bulkier than threonine is introduced. The rate of misaminoacylation of tRNA(Leu) by isoleucine and valine increases with the increasing size of the amino acid substituent at position 252, and the noncognate amino acids norvaline and norleucine are inserted efficiently at the leucine sites of recombinant proteins under conditions of constitutive overexpression of the T252Y mutant in E. coli. In addition, the unsaturated amino acids allylglycine, homoallylglycine, homopropargylglycine, and 2-butynylalanine all support protein synthesis in E. coli hosts harboring the mutant synthetase. These results demonstrate that programmed manipulation of the editing cavity can allow in vivo incorporation of novel protein building blocks. 相似文献
12.
Aminoacyl-tRNA synthetases ensure the fidelity of protein synthesis by accurately selecting and activating cognate amino acids for aminoacylation of the correct tRNA. Some tRNA synthetases have evolved an editing active site that is separate from the amino acid activation site providing two steps or "sieves" for amino acid selection. These two sieves rely on different strategies for amino acid recognition to significantly enhance the accuracy of aminoacylation. We have performed alanine scanning mutagenesis in a conserved threonine-rich region of the Escherichia coli leucyl-tRNA synthetase's CP1 domain that is hypothesized to contain a putative editing active site. Characterization of purified mutant proteins led to the identification of a single conserved threonine that prevents the cognate leucine amino acid from being hydrolyzed after aminoacylation of the tRNA. Mutation of this threonine to an alanine eliminates discrimination of the cognate amino acid in the editing active site. This provides a molecular example of an amino acid discrimination mechanism in the tRNA synthetase's editing active site. 相似文献
13.
The aminoacyl-tRNA synthetases covalently link transfer RNAs to their cognate amino acids. Some of the tRNA synthetases have evolved editing mechanisms to ensure fidelity in this first step of protein synthesis. The amino acid editing site for leucyl- (LeuRS) and isoleucyl- (IleRS) tRNA synthetases reside within homologous CP1 domains. In each case, a threonine-rich peptide and a second conserved GTG region that are separated by about 100 amino acids comprise parts of the hydrolytic editing site. While a number of sites are conserved between these two enzymes and likely confer a commonality to the mechanisms, some positions are idiosyncratic to LeuRS or IleRS. Herein, we provide evidence that a conserved arginine and threonine at respective sites in LeuRS and IleRS diverged to confer amino acid substrate recognition. This site complements other sites in the amino acid binding pocket of the editing active site of Escherichia coli LeuRS, including Thr252 and Val338, which collectively fine-tune amino acid specificity to confer fidelity. 相似文献
14.
Sarkar J Poruri K Boniecki MT McTavish KK Martinis SA 《The Journal of biological chemistry》2012,287(18):14772-14781
The yeast mitochondrial leucyl-tRNA synthetase (ymLeuRS) performs dual essential roles in group I intron splicing and protein synthesis. A specific LeuRS domain called CP1 is responsible for clearing noncognate amino acids that are misactivated during aminoacylation. The ymLeuRS CP1 domain also plays a critical role in splicing. Herein, the ymLeuRS CP1 domain was isolated from the full-length enzyme and was active in RNA splicing in vitro. Unlike its Escherichia coli LeuRS CP1 domain counterpart, it failed to significantly hydrolyze misaminoacylated tRNA(Leu). In addition and in stark contrast to the yeast domain, the editing-active E. coli LeuRS CP1 domain failed to recapitulate the splicing activity of the full-length E. coli enzyme. Although LeuRS-dependent splicing activity is rooted in an ancient adaptation for its aminoacylation activity, these results suggest that the ymLeuRS has functionally diverged to confer a robust splicing activity. This adaptation could have come at some expense to the protein's housekeeping role in aminoacylation and editing. 相似文献
15.
Effect of alanine-293 replacement on the activity, ATP binding, and editing of Escherichia coli leucyl-tRNA synthetase 总被引:2,自引:0,他引:2
Leucyl-tRNA synthetase (LeuRS) is a class I aminoacyl-tRNA synthetase that catalyzes leucylation of tRNA(Leu). Several mutants in the CP1 domain of Escherichia coli LeuRS were obtained by introduction of restriction endonuclease sites into its gene, leuS. Of these mutants, only LeuRS-A293F had decreased activity (46%) compared to the native enzyme. To investigate the effect of A293 on enzyme function, A293 was mutated to Y, G, I, R, or D. The mutants were impaired in activity and editing function to varying extents. The decrease in K(m) values for three substrates showed that the binding of ATP to these mutants became much stronger. The inhibition of ATP binding to most of the mutants was also stronger. In particular, LeuRS-A293D had the lowest activity, the strongest ATP binding, and the most impaired editing function. A red shift of the fluorescence emission maximum of LeuRS-A293D indicated a less hydrophobic chromophore environment and a relatively more flexible dynamic conformation. The change in T(m) of LeuRS-A293D was higher than that of all other substitutions. Evidence from sequence alignment and crystal structure of LeuRS from Thermus thermophilus shows that A293 was conserved as R (K) or A and is located at a small helix in the editing domain of the enzyme facing the active site. Hence, any amino acid substitution of A293 may affect the stability of the helix, which may lead to impaired editing function and aminoacylation activity and may be indirectly involved in ATP binding. 相似文献
16.
aaRSs (aminoacyl-tRNA synthetases) establish the rules of the genetic code by catalysing the formation of aminoacyl-tRNA. The quality control for aminoacylation is achieved by editing activity, which is usually carried out by a discrete editing domain. For LeuRS (leucyl-tRNA synthetase), the CP1 (connective peptide 1) domain is the editing domain responsible for hydrolysing mischarged tRNA. The CP1 domain is universally present in LeuRSs, except MmLeuRS (Mycoplasma mobile LeuRS). The substitute of CP1 in MmLeuRS is a nonapeptide (MmLinker). In the present study, we show that the MmLinker, which is critical for the aminoacylation activity of MmLeuRS, could confer remarkable tRNA-charging activity on the inactive CP1-deleted LeuRS from Escherichia coli (EcLeuRS) and Aquifex aeolicus (AaLeuRS). Furthermore, CP1 from EcLeuRS could functionally compensate for the MmLinker and endow MmLeuRS with post-transfer editing capability. These investigations provide a mechanistic framework for the modular construction of aaRSs and their co-ordination to achieve catalytic efficiency and fidelity. These results also show that the pre-transfer editing function of LeuRS originates from its conserved synthetic domain and shed light on future study of the mechanism. 相似文献
17.
Anjali P. Mascarenhas 《FEBS letters》2009,583(21):3443-3244
Aminoacyl-tRNA synthetases often rely on a proofreading mechanism to clear mischarging errors before they can be incorporated into newly synthesized proteins. Leucyl-tRNA synthetase (LeuRS) houses a hydrolytic editing pocket in a domain that is distinct from its aminoacylation domain. Mischarged amino acids are transiently translocated ∼30 Å between active sites for editing by an unknown tRNA-dependent mechanism. A glycine within a flexible β-strand that links the aminoacylation and editing domains of LeuRS was determined to be important to tRNA translocation. The translocation-defective mutation also demonstrated that the editing site screens both correctly and incorrectly charged tRNAs prior to product release. 相似文献
18.
Wong FC Beuning PJ Silvers C Musier-Forsyth K 《The Journal of biological chemistry》2003,278(52):52857-52864
Aminoacyl-tRNA synthetases are responsible for activating specific amino acids and transferring them onto cognate tRNA molecules. Due to the similarity in many amino acid side chains, certain synthetases misactivate non-cognate amino acids to an extent that would be detrimental to protein synthesis if left uncorrected. To ensure accurate translation of the genetic code, some synthetases therefore utilize editing mechanisms to hydrolyze non-cognate products. Previously class II Escherichia coli proline-tRNA synthetase (ProRS) was shown to exhibit pre- and post-transfer editing activity, hydrolyzing a misactivated alanine-adenylate (Ala-AMP) and a mischarged Ala-tRNAPro variant, respectively. Residues critical for the editing activity (Asp-350 and Lys-279) are found in a novel insertion domain (INS) positioned between motifs 2 and 3 of the class defining aminoacylation active site. In this work, we present further evidence that INS is responsible for editing in ProRS. We deleted the INS from wild-type E. coli ProRS to yield DeltaINS-ProRS. While DeltaINS-ProRS was still capable of misactivating alanine, the truncated construct was defective in hydrolyzing non-cognate Ala-AMP. When the INS domain was cloned and expressed as an independent protein, it was capable of deacylating a mischarged Ala-microhelixPro variant. Similar to full-length ProRS, post-transfer editing was abolished in a K279A mutant INS. We also show that YbaK, a protein of unknown function from Haemophilus influenzae with high sequence homology to the prokaryotic INS domain, was capable of deacylating Ala-tRNAPro and Ala-microhelixPro variants but not cognate Pro-tRNAPro. Thus, we demonstrate for the first time that an independently folded class II synthetase editing domain and a previously identified homolog can catalyze a hydrolytic editing reaction. 相似文献
19.
Escherichia coli CMP-NeuAc synthetase (EC 2.7.7.43) catalyzes the synthesis of CMP-NeuAc from CTP and NeuAc, which is essential for the formation of capsule polysialylate for strain K1. Alignment of the amino acid sequence of E. coli CMP-NeuAc synthetase with those from other bacterial species revealed that the conserved motifs were located in its N termini, whereas the C terminus appeared to be redundant. Based on this information, a series of deletions from the 3'-end of the CMPNeuAc synthetase coding region was constructed and expressed in E. coli. As a result, the catalytic domain required for CMP-NeuAc synthetase was found to be in the N-terminal half consisting of amino acids 1-229. Using the strategy of tertiary structure prediction based on the homologous search of the secondary structure, the C-terminal half was recognized as an alpha1-subunit of bovine brain platelet-activating factor acetylhydrolase isoform I. The biochemical analyses showed that the C-terminal half consisting of amino acids 228-418 exhibited platelet-activating factor acetylhydrolase activity. The enzyme properties and substrate specificity were similar to that of bovine brain alpha1-subunit. Although its physiological function is still unclear, it has been proposed that the alpha1-subunit-like domain of E. coli may be involved in the traversal of the blood-brain barrier. 相似文献
20.
Some aminoacyl-tRNA synthetases (AARSs) employ an editing mechanism to ensure the fidelity of protein synthesis. Leucyl-tRNA synthetase (LeuRS), isoleucyl-tRNA synthetase (IleRS), and valyl-tRNA synthetase (ValRS) share a common insertion, called the CP1 domain, which is responsible for clearing misformed products. This discrete domain is connected to the main body of the enzyme via two beta-strand tethers. The CP1 hydrolytic editing active site is located approximately 30 A from the aminoacylation active site in the canonical core of the enzyme, requiring translocation of mischarged amino acids for editing. An ensemble of crystal and cocrystal structures for LeuRS, IleRS, and ValRS suggests that the CP1 domain rotates via its flexible beta-strand linkers relative to the main body along various steps in the enzyme's reaction pathway. Computational analysis suggested that the end of the N-terminal beta-strand acted as a hinge. We hypothesized that a molecular hinge could specifically direct movement of the CP1 domain relative to the main body. We introduced a series of mutations into both beta-strands in attempts to hinder movement and alter fidelity of LeuRS. Our results have identified specific residues within the beta-strand tethers that selectively impact enzyme activity, supporting the idea that beta-strand orientation is crucial for LeuRS canonical core and CP1 domain functions. 相似文献