首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D K Bozhkov 《Parazitologiia》1976,10(5):428-433
On the basis of the analysis of regularities accompanying the secondary simplification of the life cycles of helminths on account of the reduction in the number of the animals-hosts 8 rules have been formulated. They are based on the following important regularities. 1. At the secondary simplification of the life cycles of helminths never fall out the first intermediate host in Trematoda and the definitive host in Nematoda. This phenomenon is suggested to be called "the host stability in the life cycle". 2. Mostly often from the life cycles fall secondarily out those hosts which join in the life cycle at its first complication later. 3. The phase of the helminth having transformed into a parasitic form at the first complication of its life cycle remains the same at the secondary simplification of this cycle.  相似文献   

2.
How complex life cycles of parasites are maintained is still a fascinating and unresolved topic. Complex life cycles using three host species, free-living stages, asexual and sexual reproduction are widespread in parasitic helminths. For such life cycles, we propose here that maintaining a second intermediate host in the life cycle can be advantageous for the individual parasite to increase the intermixture of different clones and therefore decrease the risk of matings between genetically identical individuals in the definitive host. Using microsatellite markers, we show that clone mixing occurs from the first to the second intermediate host in natural populations of the eye-fluke Diplostomum pseudospathaceum. Most individuals released by the first intermediate host belonged to one clone. In contrast, the second intermediate host was infected with a diverse array of mostly unique parasite genotypes. The proposed advantage of increased parasite clone intermixture may be a novel selection pressure favouring the maintenance of complex life cycles.  相似文献   

3.
The complex life cycles of parasites are thought to have evolved from simple one-host cycles by incorporating new hosts. Nevertheless, complex developmental routes present parasites with a sequence of highly unlikely transmission events in order to complete their life cycles. Some trematodes like Coitocaecum parvum use facultative life cycle abbreviation to counter the odds of trophic transmission to the definitive host. Parasites adopting life cycle truncation possess the ability to reproduce within their intermediate host, using progenesis, without the need to reach the definitive host. Usually, both abbreviated and normal life cycles are observed in the same population of parasites. Here, we demonstrate experimentally that C. parvum can modulate its development in its amphipod intermediate host and adopt either the abbreviated or the normal life cycle depending on current transmission opportunities or the degree of intra-host competition among individual parasites. In the presence of cues from its predatory definitive host, the parasite is significantly less likely to adopt progenesis than in the absence of such cues. An intermediate response is obtained when the parasites are exposed to cues from non-host predators. The adoption of progenesis is less likely, however, when two parasites share the resource-limited intermediate host. These results show that parasites with complex developmental routes have transmission strategies and perception abilities that are more sophisticated than previously thought.  相似文献   

4.
5.
An important component of the parasite fauna of seabirds in arctic regions are the flukes (Digena). Different species of digeneans have life cycles which may consist of 1 intermediate host and no free-living larval stages, 2 intermediate hosts and 1 free-living stage, or 2 intermediate hosts and 2 free-living larval stages. This study examined the distribution of such parasites in the intertidal zones of the southern coast of the Barents Sea (northwestern Russia and northern Norway) by investigating 2 species of periwinkles (Littorina saxatilis and L. obtusata) which are intermediate hosts of many species of digeneans. A total of 26,020 snails from 134 sampling stations were collected. The study area was divided into 5 regions, and the number of species, frequency of occurrence and prevalence of different digenean species and groups of species (depending on life cycle complexity) were compared among these regions, statistically controlling for environmental exposure. We found 14 species of digeneans, of which 13 have marine birds as final hosts. The number of species per sampling station increased westwards, and was higher on the Norwegian coast than on the Russian coast. The frequency of occurrence of digeneans with more than 1 intermediate host increased westwards, making up a larger proportion of the digeneans among infected snails. This was significant in L. saxatilis. The prevalence of different species showed the same pattern, and significantly more snails of both species were infected with digeneans with complicated life cycles in the western regions. In L. saxatilis, environmental exposure had a statistically significant effect on the distribution of the most common digenean species. This was less obvious in L. obtusata. The causes of changing species composition between regions are probably (1) the harsh climate in the eastern part of the study area reducing the probability of successful transmission of digeneans with complicated life cycles, and (2) the distribution of different final hosts.  相似文献   

6.
Studies on the life cycles and epizootiology of North American frog lung flukes indicate that most species utilize odonates as second intermediate hosts; adult frogs become infected by ingesting odonate intermediate hosts. Newly metamorphosed frogs are rarely infected with these parasites, predominantly because they are gape-limited predators that cannot feed on large intermediate hosts such as dragonflies. We examined the role of the frog diet and potential intermediate hosts in the recruitment of the frog lung fluke, Haematoloechus coloradensis, to metamorphosed northern leopard frogs (Rana pipiens), Woodhouse's toads (Bufo woodhousii), and bullfrogs (Rana catesbeiana) from western Nebraska. Because of the uncertain validity of H. coloradensis as a distinct species from Haematoloechus complexus, morphological characters of both species were reevaluated and the life cycles of both species were completed in the laboratory. The morphological data on H. coloradensis and H. coimplexus indicate that they differ in their oral sucker to pharynx ratio, uterine loop distribution, and placement of vitelline follicles. However, in terms of their life cycles, both species are quite similar in their use of physid snails as first intermediate hosts, a wide range of nonodonate and odonate arthropods as second intermediate hosts, and leopard frogs and toads as definitive hosts. These results indicate that H. coloradensis and H. complexus are generalists at the second intermediate host level and might be able to infect newly metamorphosed leopard frogs and toads by using small nonodonate arthropods more commonly than other frog lung fluke species. Comparisons of population structure of adult flukes in newly metamorphosed leopard frogs indicate that the generalist nature of H. coloradensis metacercariae enables it to colonize young of the year leopard frogs more commonly than other Haematoloechus spp. that only use odonates as second intermediate hosts. In this respect, the generalist nature of H. coloradensis and H. complexus at the second intermediate host level is an avenue for the colonization of young of year frogs.  相似文献   

7.
In complex cycles, helminth larvae in their intermediate hosts typically grow to a fixed size. We define this cessation of growth before transmission to the next host as growth arrest at larval maturity (GALM). Where the larval parasite controls its own growth in the intermediate host, in order that growth eventually arrests, some form of size- or time-dependent increase in its death rate must apply. In contrast, the switch from growth to sexual reproduction in the definitive host can be regulated by constant (time-independent) mortality as in standard life history theory. We here develop a step-wise model for the evolution of complex helminth life cycles through trophic transmission, based on the approach of Parker et al. [2003a. Evolution of complex life cycles in helminth parasites. Nature London 425, 480-484], but which includes size- or time-dependent increase in mortality rate. We assume that the growing larval parasite has two components to its death rate: (i) a constant, size- or time-independent component, and (ii) a component that increases with size or time in the intermediate host. When growth stops at larval maturity, there is a discontinuous change in mortality to a constant (time-independent) rate. This model generates the same optimal size for the parasite larva at GALM in the intermediate host whether the evolutionary approach to the complex life cycle is by adding a new host above the original definitive host (upward incorporation), or below the original definitive host (downward incorporation). We discuss some unexplored problems for cases where complex life cycles evolve through trophic transmission.  相似文献   

8.
9.
Numerous parasite species have evolved complex life cycles with multiple, subsequent hosts. In trematodes, each transmission event in multi-host life cycles selects for various adaptations, one of which is facultative life cycle abbreviation. This typically occurs through progenesis, i.e., precocious maturity and reproduction via self-fertilization within the second intermediate host. Progenesis eliminates the need for the definitive host and facilitates life cycle completion. Adopting a progenetic cycle may be a conditional strategy in response to environmental cues related to low probability of transmission to the definitive host. Here, the effects of environmental factors on the reproductive strategy of the progenetic trematode Stegodexamene anguillae were investigated using comparisons among populations. In the 3-host life cycle, S. anguillae sexually reproduces within eel definitive hosts, whereas in the progenetic life cycle, S. anguillae reproduces by selfing within the metacercaria cyst in tissues of small fish intermediate hosts. Geographic variation was found in the frequency of progenesis, independent of eel abundance. Progenesis was affected by abundance and length of the second intermediate fish host as well as encystment site within the host. The present study is the first to compare life cycle strategies among parasite populations, providing insight into the often unrecognized plasticity in parasite developmental strategies and transmission.  相似文献   

10.
Many pathogens of medical and veterinary importance have obligatory multihost life cycles. Yet, theoretical models aiming to predict patterns of pathogen reproductive success and the limited empirical data available with which to evaluate them, focus on directly transmitted microparasites. Patterns of host exploitation and the relative fitness of individual pathogen genotypes throughout the different host stages of multihost life cycles have thus remained ignored. We examined correlated responses to artificial selection of Schistosoma mansoni lines selected for high or low infection intensity in the intermediate host. Pathogen fitness in the intermediate host was strongly inversely correlated with pathogen fitness in the definitive host. Moreover, high pathogen infection intensity was associated with decreased, rather than increased, virulence to its intermediate host. These results raise important implications regarding the impact of genetic constraints on the maintenance of genetic and phenotypic polymorphisms in natural populations, the evolution and coevolution of parasite virulence and host specialization, as well as the success of host-directed control programs.  相似文献   

11.
Lagrue C  Poulin R 《Parasitology》2008,135(10):1243-1251
Parasites with complex life cycles have developed numerous and very diverse adaptations to increase the likelihood of completing this cycle. For example, some parasites can abbreviate their life cycles by skipping the definitive host and reproducing inside their intermediate host. The resulting shorter life cycle is clearly advantageous when definitive hosts are absent or rare. In species where life-cycle abbreviation is facultative, this strategy should be adopted in response to seasonally variable environmental conditions. The hermaphroditic trematode Coitocaecum parvum is able to mature precociously (progenesis), and produce eggs by selfing while still inside its amphipod second intermediate host. Several environmental factors such as fish definitive host density and water temperature are known to influence the life-history strategy adopted by laboratory raised C. parvum. Here we document the seasonal variation of environmental parameters and its association with the proportion of progenetic individuals in a parasite population in its natural environment. We found obvious seasonal patterns in both water temperature and C. parvum host densities. However, despite being temporally variable, the proportion of progenetic C. parvum individuals was not correlated with any single parameter. The results show that C. parvum life-history strategy is not as flexible as previously thought. It is possible that the parasite's natural environment contains so many layers of heterogeneity that C. parvum does not possess the ability to adjust its life-history strategy to accurately match the current conditions.  相似文献   

12.
The population biology of parasite-induced changes in host behavior   总被引:5,自引:0,他引:5  
The ability of parasites to change the behavior of infected hosts has been documented and reviewed by a number of different authors (Holmes and Bethel, 1972; Moore, 1984a). This review attempts to quantify the population dynamic consequences of this behavior by developing simple mathematical models for the most frequently recorded of such parasite life cycles. Although changes in the behavior of infected hosts do occur for pathogens with direct life cycles, they are most commonly recorded in the intermediate hosts of parasites with complex life cycles. All the changes in host behavior serve to increase rates of transmission of the parasites between hosts. In the simplest case the changes in behavior increase rates of contact between infected and susceptible conspecific hosts, whereas in the more complex cases fairly sophisticated manipulations of the host's behavioral repertory are achieved. Three topics are dealt with in some detail: (1) the behavior of the insect vectors of such diseases as malaria and trypanosomiasis; (2) the intermediate hosts of helminths whose behavior is affected in such a way as to make them more susceptible to predation by the definitive host in the life cycle; and (3) the behavior and fecundity of molluscs infected with asexually reproducing parasitic flatworms. In each case an expression is derived for R0, the basic reproductive rate of the parasite when first introduced into the population. This is used to determine the threshold numbers of definitive and intermediate hosts needed to maintain a population of the pathogen. In all cases, parasite-induced changes in host behavior tend to increase R0 and reduce the threshold number of hosts required to sustain the infection. The population dynamics of the interaction between parasites and their hosts are then explored using phase plane analyses. This suggests that both the parasite and intermediate host populations may show oscillatory patterns of abundance. When the density of the latter is low, parasite-induced changes in host behavior increase this tendency to oscillate. When intermediate host population densities are high, parasite population density is determined principally by interactions between the parasites and their definitive hosts, and changes in the behavior of intermediate hosts are less important in determining parasite density. Analysis of these models also suggests that both asexual reproduction of the parasite within a host and parasite-induced reduction in host fecundity may be stabilizing mechanisms when they occur in the intermediate hosts of parasite species with indirect life cycles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Parasitic worms (helminths) frequently have complex life cycles in which they are transmitted trophically between two or more successive hosts. Sexual reproduction often takes place in high trophic-level (TL) vertebrates, where parasites can grow to large sizes with high fecundity. Direct infection of high TL hosts, while advantageous, may be unachievable for parasites constrained to transmit trophically, because helminth propagules are unlikely to be ingested by large predators. Lack of niche overlap between propagule and definitive host (the trophic transmission vacuum) may explain the origin and/or maintenance of intermediate hosts, which overcome this transmission barrier. We show that nematodes infecting high TL definitive hosts tend to have more successive hosts in their life cycles. This relationship was modest, though, driven mainly by the minimum TL of hosts, suggesting that the shortest trophic chains leading to a host define the boundaries of the transmission vacuum. We also show that alternative modes of transmission, like host penetration, allow nematodes to reach high TLs without intermediate hosts. We suggest that widespread omnivory as well as parasite adaptations to increase transmission probably reduce, but do not eliminate, the barriers to the transmission of helminths through the food web.  相似文献   

14.
Anikieva LV 《Parazitologiia》2005,39(5):386-396
Discrete variability of four P. percae characters of the main cestode functional complexes was identified. Phenotypic diversity of P. percae from different parts of the distribution range was analysed. Research revealed low geographic variability and high stability of the dominant variations in combination with morphometric plasticity. The conclusion was made that the patterns of P. percae morphological variability were shaped by the common fate and long-standing co-evolutionary relations between the parasite and the host--the perch Perca fluviatilis.  相似文献   

15.
Studies of the life cycle stages of digeneans and oncophoreans (= monogeneans and cestodes) indicate that these two groups had separate origins from free-living rhabdocoel-like ancestors and that the original single-host life cycles became 2-host cycles through accidental ingestion, in digeneans by free-swimming adults being ingested by vertebrates, and in cestodes by eggs being ingested by invertebrates. In both lines a third host was incorporated as a means of increasing the efficiency of transfer between hosts, in digeneans between the primary mollusc and the secondary vertebrate, and in cestodes between the secondary (“first intermediate”) host and the primary vertebrate host.  相似文献   

16.
Marine macroalgae (seaweed) show diverse life cycles. Species with a heteromorphic life cycle have a large multicellular algal body in one generation but have a very small body in the second generation of the same year. In contrast, the diploid and haploid life forms of isomorphic species have similar morphology, and these species often have more than two generations in a year. Here, we first study the optimal life cycle schedule of marine macroalgae when daily mortality changes seasonally, and then we discuss the conditions for coexistence and relative dominance of different life cycles. According to the optimal life cycle schedule, heteromorphic species tend to have a generation with a large algal body when mortality is low, and a microscopic-sized generation when mortality is high. In contrast, isomorphic species tend to mature when body size reaches a threshold value that is the same for different generations. We then examine the coexistence of the two life cycles when growth rate decreases with biomass. The model predicts that (1) at high latitudes (i.e., in strongly seasonal environments), heteromorphic species are likely to dominate over isomorphic species, and (2) species with a heteromorphic life cycle should dominate in the supratidal and upper intertidal zones where macroalgae tend to suffer high mortality, and also in the subtidal zone, where mortality is low, whereas isomorphic species are likely to be more successful when mortality is intermediate. These predictions are consistent with the observed distribution patterns of the two life cycles in macroalgae.  相似文献   

17.
Two phases with an intervening brief lag-phase are recognized during the growth of the metacercaria of Pleurogenoides orientalis in the intermediate host (nymphs of Tramea limbata), the first phase being characterized by rapid growth and organogeny and the second phase by limited growth and development. The phases of growth and development of the metacercaria are correlated with various events in the cyst-forming process. The growth of the adult fluke in the definitive host (Rana cyanophlyctis) is characterized by a short initial lag-phase followed by a rapid phase during which there is rapid growth. Comparison of allometric growth parameters of various organs of the metacercaria and of the adult revealed definite allometric shifts. The validity of various species included in the genus Pleurogenoides is examined in the light of observations made on intraspecific variation in P. orientalis.  相似文献   

18.
We investigate competition between separate periodical cicada populations each possessing different life‐cycle lengths. We build an individual‐based model to simulate the cicada life cycle and allow random migrations to occur between patches inhabited by the different populations. We show that if hybridization between different cycle lengths produces offspring that have an intermediate life‐cycle length, then predation acts disproportionately to select against the hybrid offspring. This happens because they emerge in low densities without the safety‐in‐numbers provided by either parent population. Thus, prime‐numbered life cycles that can better avoid hybridization are favored. However, we find that this advantage of prime‐numbered cycles occurs only if there is some mechanism that can occasionally synchronize emergence between local populations in sufficiently many patches.  相似文献   

19.
A sine-wave oscillating rhythm of the heart rate is reported in 24 out of 31 resting healthy subjects. Identification of these free-running cycles was by spectral analysis of minute-by-minute recordings of electrocardiograms, and in a few cases by inspection of cardiotachometer records. The periodicity of this rhythm was circa 10 min and was intermediate in frequency between the rapid fluctuations with frequencies of 15, 30, and 60 s and those of a frequency recurrent every 90 min already described in the literature. Our cycles were independent of age and sex.  相似文献   

20.
Year-round collections of mayflies (Ephemeroptera) from a Colorado mountain stream allowed critical examination of several methods of calculating production for species with different life cycles. Five of the six numerically dominant species exhibited slow seasonal, univoltine life cycles. Baetis tricaudatus was bivoltine. Two species demonstrated well synchronized development, three species were poorly synchronized and a sixth was intermediate. Mean density and biomass data from each sampling date were used to ascertain the goodness-of-fit of each species to the Allen curve. It is proposed that such information can provide quantitative criteria for identifying species with well synchronized development and thereby determine when it is appropriate to directly apply cohort methods while avoiding time intensive body size (e.g. head width) measurements necessary for size-frequency analyses. In addition, these data demonstrate that species specific production varies with gross changes in elevation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号