首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Declines in species richness due to fertilization are typically rapid and associated with increases in aboveground production. However, in a long-term experiment examining the impacts of fertilization in an early successional community, we found it took 14 years for plant species richness to significantly decline in fertilized plots, despite fertilization causing a rapid increase in aboveground production. To determine what accounted for this lag in the species richness response, we examined several potential mechanisms. We found evidence suggesting the abundance of one functional group—tall species with long-distance (runner) clonality—drove changes in species richness, and we found little support for other mechanisms. Tall runner species initially increased in abundance due to fertilization, then declined dramatically and were not abundant again until later in the experiment, when species richness and the combined biomass of all other functional groups (non-tall runner) declined. Over 86 % of the species found throughout the course of our study are non-tall runner, and there is a strong negative relationship between non-tall runner and tall runner biomass. We therefore suggest that declines in species richness in the fertilized treatment are due to high tall runner abundance that decreases the abundance and richness of non-tall runner species. By identifying the functional group that drives declines in richness due to fertilization, our results help to elucidate how fertilization decreases plant richness and also suggest that declines in richness due to fertilization can be lessened by controlling the abundance of species with a tall runner growth form.  相似文献   

2.
We investigated the effects of exotic species invasion and 3?years of nitrogen (N) fertilization on the soil seed bank in Joshua Tree National Park, California, USA at four sites along an N deposition gradient. We compared seed bank composition and density in control (no N added) and fertilized (30?kg?N?ha?1?year?1) plots to determine if the seed bank would reflect aboveground changes due to N fertilization. Soil samples were collected and germinated in a greenhouse over 2?years. In the field, invasive species cover responded positively to N fertilization. However, we did not observe increased seed density of exotic invasive species in fertilized plots. While no significant differences were detected between treatments within sites, exotic invasive grass seeds overwhelmed the seed bank at all sites. Significant differences between sites were found, which may be due to differences in level of invasion, historic N deposition, and soil surface roughness. Sites experiencing low N deposition had the highest seed bank species richness for both control and fertilized treatments. Aboveground plant density did not correlate well with seed bank density, possibly due to the inherent patchiness of soil seed banks and differential ability of species to form seed banks. This seed bank study provided insight into site-specific impacts on native versus invasive species composition of soil seed banks, as well as magnitude of invasion and restoration potential at invaded sites.  相似文献   

3.
The effects of preplant phosphorus fertilization on fine root (2 mm) distribution were examined in an 11-year-old stand of loblolly pine (Pinus taeda L.) located on the lower Coastal Plain of North Carolina. Root auger cores were collected from the planting bed and interbed areas from two depths (0–10 and 10–20 cm) from fertilized (45 kg P ha–1 at time of planting) and nonfertilized plots. Root samples were collected and aboveground growth measured during the 11th year after fertilization. Despite significant increases in aboveground volume and biomass due to fertilization, fine root biomass was unaffected. No differences in rooting density (root length per volume of soil) due to phosphorus additions were detected. However, the ratio of fine root biomass to aboveground (shoot) biomass (R:S) was significantly smaller on plots receiving phosphorus fertilization.operated by Martin Marietta Energy Systems, Inc., under Contract No. DE-AC05-840 R21400 with the U.S. Department of Energy  相似文献   

4.
Abstract. Question: What is the long‐term influence of nutrient availability, productivity and soil pH on grassland community organization? Location: Ukulinga research farm, KwaZulu‐Natal, South Africa. Methods: The influence of fertilization on soil pH, nitrogen (N) and phosphorus (P) on variation in plant traits, community composition and species richness were examined in a 50‐year grassland fertilization experiment. Results: Averaged over 30 years, above‐ground net primary production (ANPP) was 337, 428 and 518 g.m‐2 in sites not fertilized, fertilized with N, and fertilized with N plus P respectively. ANPP depended directly on N‐fertilization but not on P‐fertilization or liming, and responded positively to the interaction of N (first limiting nutrient) and P (second limiting nutrient). Short narrow‐leaved grass species —Themeda triandra, Tristachya leucothrix and Setaria nigrirostris— dominated sites of lowest ANPP where N was limiting (unfertilized, P‐fertilized or limed sites). A tall narrow‐leaved species, Eragrostis curvula, dominated sites of intermediate ANPP where P was limiting (N‐fertilized sites). By contrast, a tall broad‐leaved species, Panicum maximum, dominated the most productive sites where neither N nor P were limiting (N‐ and P‐fertilized sites). Certain species responded to liming and type of N‐fertilizer apparently because of their effects on soil pH. N‐fertilization reduced the density of herbaceous dicots (forbs) from 14 (unfertilized) to two (high N, no P, no lime) and five species per m2 (high N, no P, limed). This effect was attributed to increased ANPP and a decrease in soil pH from 4.6 (KCl) in unfertilized sites to 3.49 (high N, no lime) and 4.65 (high N and lime). Soil acidification had no effect on grass species richness but influenced the abundance of certain species. Conclusions: Grassland community organization is determined not only by the influence of N availability, but also by the hierarchical interaction of N and P availability, in part through their compounded effect on ANPP, and by individualistic species responses to soil pH.  相似文献   

5.
Brewer  J. Stephen  Cralle  Sean P. 《Plant Ecology》2003,167(2):237-245
Imperata cylindrica is an invasive C4 grass, native to Asia and increasing in frequency throughout the tropics, subtropics, and southeastern USA. Such increases are associated with reduced biodiversity, altered fire regimes, and a more intense competitive environment for commercially important species. We measured rates of clonal spread by I. cylindrica from a roadside edge into the interior of two longleaf pine savannas. In addition, we measured the effects of fertilization with nitrogen and phosphorus on clonal invasion of one of these sites. Clonal invasion occurred at both sites and at similar rates. Older portions of an I. cylindrica sward contained fewer species of native pine-savanna plants. Clonal growth rates and aboveground mass of I. cylindrica were reduced by the addition of phosphorus relative to controls by the second growing season at one site. As a group, native species were not affected much by P-addition, although the height of legumes was increased by P addition, and the percent cover of legumes relative to native non-legumes decreased with increasing expected P limitation (i.e., going from P-fertilized to controls to N-fertilized treatments). Clonal invasion was negatively correlated with the relative abundance of legumes in control plots but not in P-fertilized plots. Species richness and percent cover of native plants (both legumes and non-legumes) were dramatically lower in N-fertilized plots than in controls or P-fertilized plots. Species richness of native plants was negatively correlated with final aboveground mass of I. cylindrica in control and P-fertilized plots, but not in N-fertilized plots. The results suggest that I. cylindrica is a better competitor for phosphorus than are native pine-savanna plants, especially legumes, and that short-lived, high-level pulses of phosphorus addition reduce this competitive advantage without negatively affecting native plant diversity. Ratios of soil P to N or native legume to non-legume plant species may provide indicators of the resistance of pristine pine savannas to clonal invasion by I. cylindrica.  相似文献   

6.
In competition‐dominated communities, traits promoting resource conservation and competitive ability are expected to have an important influence on species relative abundance (SRA). Yet, few studies have tested the trait‐abundance relations in the line of species trade‐off in resource conservation versus acquisition, indicating by multiple traits coordination. We measured SRA and key functional traits involving leaf economic spectrum (SLA, specific leaf area; LDMC, leaf dry matter content; LCC, leaf carbon concentration; LNC, leaf nitrogen concentration; LPC, leaf phosphorus concentration; Hs, mature height) for ten common species in all plots subjected to addition of nitrogen fertilizer (N), phosphorus fertilizer (P), or both of them (NP) in a Tibetan alpine meadow. We test whether SRA is positively related with traits promoting plant resource conservation, while negatively correlated with traits promoting plant growth and resource acquisition. We found that species were primarily differentiated along a trade‐off axis involving traits promoting nutrient acquisition and fast growth (e.g., LPC and SLA) versus traits promoting resource conservation and competition ability (e.g., large LDMC). We further found that SRA was positively correlated with plant height, LDMC, and LCC, but negatively associated with SLA and leaf nutrient concentration irrespective of fertilization. A stronger positive height‐SRA was found in NP‐fertilized plots than in other plots, while negative correlations between SRA and SLA and LPC were found in N or P fertilized plots. The results indicate that species trade‐off in nutrient acquisition and resource conservation was a key driver of SRA in competition‐dominated communities following fertilization, with the linkage between SRA and traits depending on plant competition for specific soil nutrient and/or light availability. The results highlight the importance of competitive exclusion in plant community assembly following fertilization and suggest that abundant species in local communities become dominated at expense of growth while infrequent species hold an advantage in fast growth and dispersals to neighbor meta‐communities.  相似文献   

7.
The Brazilian Cerrado is a diversity hotspot due to its high level of endemism and rapid loss of habitats. It is estimated that the number of herbaceous species is four times higher than that of woody species. Increasing levels of nitrogen additions to natural ecosystems have been indicated as a determinant of biodiversity loss. We investigated the effects of nutrient additions on the productivity (aboveground and belowground) and on diversity of the herbaceous-subshrub layer of a Brazilian savanna (cerrado stricto sensu). The experiment was carried out in the IBGE Ecological Reserve, near Brasília, Brazil. Between 1998 and 2006, N, P, N plus P, or Ca were applied to sixteen 225 m2 plots, arranged in a completely randomized design. Aboveground biomass was compared 1 year after the first fertilization and 10 years later. Floristic diversity was significantly different (P < 0.01) between the treatments. The highest and lowest species richness were presented in control and NP, respectively. The addition of P alone or in combination with N induced invasion by Melinis minutiflora (exotic C4 grass). The aboveground biomass of this species was higher in NP and P plots. In the N treatment, Echinolaena inflexa (native C3 grass) presented elevated cover and biomass but M. minutiflora was absent. The invasion by alien species resulted in negative impacts on native grass species. Besides changes in aboveground biomass, addition of N and P also led, although to a lesser extent, to changes in the root morphology and biomass, but these responses were modulated by seasonal variation in soil moisture. The results suggest that environmental changes in nutrient availability can lead to important consequences for diversity and functioning of this savanna where the numerous rare species have more chance to persist under dystrophic conditions as some species that tend to be dominant would be less competitive.  相似文献   

8.
*Assessing plant nutrient limitation is a fundamental part of understanding grassland dynamics. The ratio of concentrations of nitrogen (N) and phosphorus (P) in vegetation has been proposed as an index of the relative limitation of biomass production by N and P, but its utility has not been tested well in grasslands. *At five sites in Kruger National Park, South Africa, across soil and precipitation contrasts, N and P were added in a factorial design to grass-dominated plots. *Although the N:P ratio of unfertilized vegetation across all sites (5.8) would have indicated that production was N-limited, aboveground production was consistently co-limited by N and P. Aboveground production was still greater in plots fertilized with N and P than in those fertilized with just N, but the N:P ratio did not exceed standard thresholds for P limitation in N-fertilized vegetation. Comparisons among sites showed little pattern between site N:P ratio and relative responses to N and P. *When combined with results from other grassland fertilization studies, these data suggest that the N:P ratio of grasses has little ability to predict limitation in upland grasslands. Co-limitation between N and P appears to be much more widespread than would be predicted from simple assumptions of vegetative N:P ratios.  相似文献   

9.

Background and aims

We ask how productivity responses of alpine plant communities to increased nutrient availability can be predicted from abiotic regime and initial functional type composition.

Methods

We compared four Caucasian alpine plant communities (lichen heath, Festuca varia grassland, Geranium-Hedysarum meadow, snow bed community) forming a toposequence and contrasting in productivity and dominance structure for biomass responses to experimental fertilization (N, P, NP, Ca) and irrigation for 4–5?years.

Results

The dominant plants in more productive communities monopolized added N and P, at the expense of their neighbors. In three out of four communities, N and P fertilizations gave greater aboveground biomass increase than N or P fertilization alone, indicating overall co-limitation of N and P, with N being most limiting. Relative biomass increase in NP treatment was negatively related to biomass in control plots across the four communities. Grasses often responded more vigorously to P, but sedges to N alone. Finally, we present one of the rare examples of a forb showing a strong N or NP response.

Conclusion

Our findings will help improve our ability to predict community composition and biomass dynamics in cool ecosystems subject to changing nutrient availability as induced by climate or land-use changes.  相似文献   

10.
Aims Comparisons of the trait–abundance relationships from various habitat types are critical for community ecology, which can offer us insights about the mechanisms underlying the local community assembly, such as the relative role of neutral vs. niche processes in shaping community structure. Here, we explored the responses of trait–abundance relationships to nitrogen (N), phosphorus (P) and potassium (K) fertilization in an alpine meadow.Methods Five fertilization treatments (an unfertilized control and additions of N, P, K and NPK respectively) were implemented using randomized block design in an alpine Tibetan meadow. Species relative abundance (SRA), plant above-ground biomass and species richness were measured in each plot. For 24 common species, we measured species functional traits: saturated height, specific leaf area (SLA) and leaf dry matter content (LDMC) in each treatment but seed size only in the unfertilized control. Standard major axis (SMA) regression and phylogenetically independent contrasts (PICs) analysis were used to analyse species trait–abundance relationships in response to different fertilization treatments.Important findings Positive correlations between SRA and saturated height were raised following N, P and NPK fertilizations, which indicated an increase in light competition in these plots. In P fertilized plots, SRA was also positively correlated with LDMC because tall grasses with a nutrients conservation strategy often have a relative competitive advantage in capturing limited light and soil nutrients. In K fertilized plots, neither the trait–abundance relationships nor above-ground biomass or species richness significantly differed from that in the control, which suggests that K was not a limiting resource in our study site. These significant correlations between species traits and relative abundance in fertilized treatment suggest that trait-based selection plays an important role in determining species abundance within local communities in alpine meadows.  相似文献   

11.
Olde Venterink H. and Vittoz P. 2008. Biomass production of the last remaining fen with Saxifraga hirculus in Switzerland is controlled by nitrogen availability. Bot. Helv. 118: 165 – 174. For conservation management of endangered plants it is important to know which nutrient(s) control growth of the vegetation, because maintenance of low nitrogen (N), phosphorus (P) or potassium (K) availability requires different management measures. The aim of this study was to determine the type of nutrient limitation for the vegetation in the last remaining site with Saxifraga hirculus in Switzerland, using nutrient ratios in the aboveground vegetation as an indicator. We made vegetation relevees, collected biomass of the vascular plants, and took soil samples in three plots at this site. The biomass was very low (152–231 g m -2), and all three plots were clearly N-limited with N:P ratios of 7– 8. Soil extractable N concentrations were generally low, and P and K concentrations were moderate to high, which was consistent with the indicated N limitation. Hence conservation management first of all needs to prevent N-enrichment, and needs to avoid increased mineralization rates through drainage, or the accumulation of N in the system from atmospheric deposition. Therefore N output seems required through for instance grazing or mowing. The current grazing management seems to function well, since total aboveground biomass is very low and S. hirculus has a high abundance in this last remnant. Submitted 5 June 2008; Accepted 14 October 2008 Subject editor: Sonja Wipf  相似文献   

12.
Doris Grellmann 《Oikos》2002,98(2):190-204
This study investigated the impacts of fertilization and grazing by Norwegian lemmings (Lemmus lemmus), grey‐sided voles (Clethrionomys rufocanus), and reindeer (Rangifer tarandus) on a diverse tundra plant community dominated by deciduous shrubs. Four out of eight study areas, having a size of 2500 m2 each, were fertilized with a N‐P‐K fertilizer and four areas served as unfertilized controls. Two types of exclosures were used within each study area, one to exclude solely reindeer, and one to exclude both rodents and reindeer. Open, grazed plots served as controls. During 5 years following the fertilization event the changes in vegetation inside and outside the exclosures were monitored using a point frequency method. The densities of rodents on the fertilized and unfertilized areas were investigated by live trapping and by counting nests of overwintering individuals. Reindeer do not graze on the study area during the growing season but migrate through this area in autumn and spring. Fertilization increased the abundance of vascular plants while grazing by reindeer and rodents decreased the abundance of vascular plants significantly on both fertilized and unfertilized areas. Rodents preferred clearly the fertilized areas during winter, decreasing the abundance of Vaccinium myrtillus and Vaccinium vitis‐idaea, while very little grazing occurred during summer. Graminoids showed the strongest positive response to fertilization and dominated the plant community on ungrazed plots, while winter grazing by both reindeer and rodents significantly decreased the abundance of graminoids. Deciduous shrubs (Betula nana, Vaccinium myrtillus) increased slightly but significantly due to fertilization and evergreen dwarf shrubs showed no response to fertilization. However, the use of functional growth forms for predicting the responses of nutrient enrichment and grazing must be questioned, as responses to fertilization as well as preferences by herbivores were shown to be species‐specific rather than uniform within functional groups based on plant growth forms.  相似文献   

13.

Background

The effect of low nutrient availability on plant-consumer interactions during early succession is poorly understood. The low productivity and complexity of primary successional communities are expected to limit diversity and abundance of arthropods, but few studies have examined arthropod responses to enhanced nutrient supply in this context. We investigated the effects of nitrogen (N) and phosphorus (P) addition on plant productivity and arthropod abundance on 24-yr-old soils at Mount St. Helens volcano.

Methodology/Principal Findings

We measured the relative abundance of eight arthropod orders and five families in plots that received N, P, or no nutrients for 3–5 years. We also measured plant % cover, leaf %N, and plant diversity. Vegetation responded rapidly to N addition but showed a lagged response to P that, combined with evidence of increased N fixation, suggested P-limitation to N availability. After 3 yrs of fertilization, orthopterans (primarily Anabrus simplex (Tettigoniidae) and Melanoplus spp (Acrididae)) showed a striking attraction to P addition plots, while no other taxa responded to fertilization. After 5 yrs of fertilization, orthopteran density in the same plots increased 80%–130% with P addition and 40% with N. Using structural equation modeling, we show that in year 3 orthopteran abundance was associated with a P-mediated increase in plant cover (or correlated increases in resource quality), whereas in year 5 orthopteran density was not related to cover, diversity or plant %N, but rather to unmeasured effects of P, such as its influence on other aspects of resource quality.

Conclusions/Significance

The marked surprising response to P by orthopterans, combined with a previous observation of P-limitation in lepidopteran herbivores at these sites, suggests that P-mediated effects of food quantity or quality are critical to insect herbivores in this N-P co-limited primary successional system. Our results also support a previous suggestion that the availability of N in these soils is P-limited.  相似文献   

14.

Background

Although plant growth in alpine steppes on the Tibetan Plateau has been suggested to be sensitive to nitrogen (N) addition, the N limitation conditions of alpine steppes remain uncertain.

Methods

After 2 years of fertilization with NH4NO3 at six rates (0, 10, 20, 40, 80 and 160 kg N ha?1 yr?1), the responses of plant and soil parameters as well as N2O fluxes were measured.

Results

At the vegetation level, N addition resulted in an increase in the aboveground N pool from 0.5?±?0.1 g m?2 in the control plots to 1.9?±?0.2 g m?2 in the plots at the highest N input rate. The aboveground C pool, biomass N concentration, foliar δ15N, soil NO3 ?-N and N2O flux were also increased by N addition. However, as the N fertilization rate increased from 10 kg N ha?1 yr?1 to 160 kg N ha?1 yr?1, the N-use efficiency decreased from 12.3?±?4.6 kg C kg N?1 to 1.6?±?0.2 kg C kg N?1, and the N-uptake efficiency decreased from 43.2?±?9.7 % to 9.1?±?1.1 %. Biomass N:P ratios increased from 14.4?±?2.6 in the control plots to 20.5?±?0.8 in the plots with the highest N input rate. Biomass N:P ratios, N-uptake efficiency and N-use efficiency flattened out at 40 kg N ha?1 yr?1. Above this level, soil NO3 ?-N began to accumulate. The seasonal average N2O flux of growing season nonlinearly increased with increased N fertilization rate and linearly increased with the weighted average foliar δ15N. At the species level, N uptake responses to relative N availability were species-specific. Biomass N concentration of seven out of the eight non-legume species increased significantly with N fertilization rates, while Kobresia macrantha and the one legume species (Oxytropics glacialis) remained stable. Both the non-legume and the legume species showed significant 15N enrichment with increasing N fertilization rate. All non-legume species showed significant increased N:P ratios with increased N fertilization rate, but not the legume species.

Conclusions

Our findings suggest that the Tibetan alpine steppes might be N-saturated above a critical N load of 40 kg N ha?1 yr?1. For the entire Tibetan Plateau (ca. 2.57 million km2), a low N deposition rate (10 kg N ha?1 yr?1) could enhance plant growth, and stimulate aboveground N and C storage by at least 1.1?±?0.3 Tg N yr?1 and 31.5?±?11.8 Tg C yr?1, respectively. The non-legume species was N-limited, but the legume species was not limited by N.  相似文献   

15.
Tree growth (as diameter increment), litterfall production, and litter biomass were studied in two secondary tropical dry forests of the Yucatán Peninsula under four treatments of nutrient addition. The studys objective was to assess how variations in the nutrient supply affect aboveground net primary production and carbon (C) accumulation on the floor of two forests in different stages of regeneration. The study included an area of young forest (10 years old) with phosphorus (P)-poor soils and an area of old forest (around 60 years old) where soil P was comparatively less limiting. Four replicate plots (12 × 12 m) at each forest were either left intact (controls) or fertilized with nitrogen (N), P, or N plus P during 3 consecutive years. After 3 years of fertilization, relaxation of the constraints on nutrient limitation resulted in increased trunk growth rates at both the young and old forests. This effect was more pronounced with the addition of P or N plus P (trunk growth doubled with respect to controls), whereas N addition increased tree growth by 60% in comparison to trees in plots without nutrient supplements. In both forests, there were no significant differences in litterfall production among treatments during the first 2 years after fertilization. In the 3rd year of nutrient addition, litterfall production was significantly higher in plots fertilized with N plus P compared to control plots at both forest sites; however, changes in litterfall were not accompanied by litter accumulation in the floor of the two forests. The results of this study support the hypothesis that there is nutrient limitation during tropical dry forest regeneration. They further show that it may be maintained in the long term during secondary succession.  相似文献   

16.
Abstract. The biodiversity of species‐rich semi‐natural meadows is declining across Europe due to ceased management. In this study we aimed to find out how successfully the local species richness of an overgrown semi‐natural mesic meadow could be restored by sheep grazing after a long period of abandonment. The cover of vascular plant species in grazed plots and ungrazed exclosures was studied for five years and the responses of different functional plant groups were followed (herbs vs grasses, tall vs short species, species differing in flowering time, species representing different Grime's CSR strategies and species indicative of rich vs poor soil). Grazing increased species number by nearly 30%. On grazed plots the litter cover practically disappeared, favouring small herbs such as Rhinanthus minor, Ranunculus acris, Trifolium pratense and the grass Agrostis capillaris. Grazing decreased the cover of the late flowering tall herb Epilobium angustifolium but had no effect on the abundance of the early flowering tall herbs Anthriscus sylvestris or Geranium sylvaticum. We suggest that to succeed in restoration it is useful to determine the responses of different functional plant groups to grazing. Grassland managers need this information to optimize the methods and timing of management used in restoration. Additional management practices, such as mowing, may be needed in mesic meadows to decrease the dominance of tall species. The availability of propagules seemed to restrict further increase of species richness in our study area.  相似文献   

17.
Trade-off between nutrient uptake rate and product accumulation has been found among species characterized as acquisitive and conservative strategies in resource utilization. However, long-term grazing causes changes in soil nutrient availability and plant species abundance by selective foraging and resource allocation between above- and belowground organs, which may cover up such trade-off. However, little is known whether the trade-off can be observed among species in community without grazing disturbance, and how grazing influences the trade-off. We conducted a 15N labelling experiment in winter grazing and grazing release alpine meadow communities on the Tibet Plateau. We examined changes in N form uptake of 11 common species and relationship of N chemical uptake rate with aboveground biomass. Grazing release increased soil \({\text{NH}}_{4}^{ + }\)–N and \({\text{NO}}_{3}^{ - }\)–N, and increased \({\text{NO}}_{3}^{ - }\)–N uptake rate in two species and \({\text{NH}}_{4}^{ + }\)–N uptake rate in three species. Meanwhile, grazing release decreased aboveground biomass of three species and two of them belong to those species’ increased N uptake rate. Contrarily, grazing release increased aboveground biomass of four species and none belongs to the changed N uptake rate. Thus, grazing release caused changes of plant nutrient uptake rate and aboveground production in different directions, which explains the negative relationship of N uptake rate with aboveground biomass in ungrazed community. Our results indicate that the increase in nutrient uptake is probably one of the mechanisms for acquisitive species to cope with the raising nutrient availability and/or competition from the conservative dominant grasses after grazing release.  相似文献   

18.
We studied long-term effects of fertilization with wood ash on biomass, vitality and mycorrhizal colonization of fine roots in three conifer forest stands growing in Vacciniosa turf. mel. (V), Myrtillosa turf. mel. (M) and Myrtillosa turf. mel./Caricoso-phragmitosa (MC) forest types on peat soils. Fertilization trials amounting 5 kg/m2 of wood ash were established 12 years prior to this study. A total of 63 soil samples with roots were collected and analysed. Ectomycorrhizal (ECM) fungi in roots were identified by morphotyping and sequencing of the fungal internal transcribed spacer (ITS) region. In all forest types, fine root biomass was higher in fertilized plots than in control plots. In M forest type, proportion of living fine roots was greater in fertilized plots than in control plots, while in V and MC, the result was opposite. Fifty ECM species were identified, of which eight were common to both fertilized and control plots. Species richness and Shannon diversity index were generally higher in fertilized plots than in control plots. The most common species in fertilized plots were Amphinema byssoides (17.8 %) and Tuber cf. anniae (12.2 %), while in control plots, it was Tylospora asterophora (18.5 %) and Lactarius tabidus (20.3 %). Our results showed that forest fertilization with wood ash has long-lasting effect on diversity and composition of ECM fungal communities.  相似文献   

19.
Nutrient supply commonly limits aboveground plant productivity in forests, but the effects of an altered nutrient supply on gross primary production (GPP) and patterns of carbon (C) allocation remain poorly characterized. Increased nutrient supply may lead to a higher aboveground net primary production (ANPP), but a lower total belowground carbon allocation (TBCA), with little change in either aboveground plant respiration (APR) or GPP. Alternatively, increases in nutrient supply may increase GPP, with the quantity of GPP allocated aboveground increasing more steeply than the quantity of GPP allocated belowground. To examine the effects of an elevated nutrient supply on the C allocation patterns in forests, we determined whole‐ecosystem C budgets in unfertilized plots of Eucalyptus saligna and in adjacent plots receiving regular additions of 65 kg N ha?1, 31 kg P ha?1, 46 kg K ha?1, and macro‐ and micronutrients. We measured the absolute flux of C allocated to the components of GPP (ANPP, TBCA and APR), as well as the fraction of GPP allocated to these components. Fertilization dramatically increased GPP. Averaged over 3 years, GPP in the fertilized plots was 34% higher than that in the unfertilized controls (3.95 vs. 2.95 kg C m?2 yr?1). Fertilization‐related increases in GPP were allocated entirely aboveground – ANPP was 85% higher and APR was 57% higher in the fertilized than in the control plots, while TBCA did not differ significantly between treatments. Carbon use efficiency (NPP/GPP) was slightly higher in the fertilized (0.53) compared with the control plots (0.51). Overall, fertilization increased ANPP and APR, and these increases were related to a greater GPP and an increase in the fraction of GPP allocated aboveground.  相似文献   

20.
Long-term (1977–90) experimental exclusion of three species of kangaroo rats from study plots in the Chihuahuan Desert resulted in significant increases in abundance of a tall annual grass (Aristida adscensionis) and a perennial bunch grass (Eragrostis lehmanniana). This change in the vegetative cover affected use of these plots by several other rodent species and by foraging birds. The mechanism producing this change probably involves a combination of decreased soil disturbance and reduced predation on large-sized seeds when kangaroo rats are absent. Species diversity of summer annual dicots was greater on plots where kangaroo rats were present, as predicted by keystone predator models. However, it is not clear whether this was caused directly by activities of the kangaroo rats or indirectly as a consequence of the increase in grass cover. No experimental effect on species diversity of winter annual dicots was detected. Our study site was located in a natural transition between desert scrub and grassland, where abiotic conditions and the effects of organisms may be particularly influential in determining the structure and composition of vegetation. Under these conditions kangaroo rats have a dramatic effect on plant cover and species composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号