首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The genetic structure of the 42.84-43.6 F (BamHI-PstI) segment of the F plasmid, which contains all the F DNA sequences necessary for coupling cell division of F+ bacteria with plasmid DNA replication, was analyzed by isolating a series of amber mutants. Two cistrons were found in this region and they were designated letA and letD (an abbreviation for lethal mutation). The letA and letD cistrons were mapped on the 42.84-43.35 F (BamHI- XmaI ) segment and the 43.07-43.6 F (HincII-PstI) segment, respectively, and are presumed to correspond to the first (43.04-43.26 F) and second (43.26-43.57 F) open reading frames, respectively, which were found in this region by nucleotide sequencing. The letD gene product acts to inhibit cell division of the host bacteria and to induce prophages in lysogenic bacteria, whereas the letA gene product acts to suppress the activity of the letD gene product. Taking into consideration the fact that the 42.84-43.6 F segment carries all the F plasmid genes necessary for coupling cell division with plasmid DNA replication, and that the expression of the genes is likely to be controlled by plasmid DNA replication, we constructed the following hypothesis. Before completion of plasmid DNA replication, LetD protein acts to prevent cell division of the host bacteria. When plasmid DNA replication is completed, synthesis of LetA protein (and also LetD protein) takes place and the LetA protein synthesized acts to suppress the activity of LetD protein and make the cell ready for cell division. Actual cell division will take place when replication of both chromosomal and plasmid DNA is completed and the termination protein of the chromosome and the LetA protein of F plasmid are both synthesized. When cell division takes place LetA protein is consumed, and as a result LetD protein becomes active and prevents cell division until the next round of DNA replication is completed.  相似文献   

2.
The letA (ccdA) and letD (ccdB) genes, located just outside the sequence essential for replication of the F plasmid, apparently contribute to stable maintenance of the plasmid. The letD gene product acts to inhibit partitioning of chromosomal DNA and cell division of the host bacteria, whereas the letA gene product acts to suppress the activity of the letD gene product. To identify the target of the letD gene product, temperature-sensitive growth-defective mutants were screened from bacterial mutants that had escaped the letD product growth inhibition that occurs in hosts carrying an FletA mutant. Of nine mutants analysed, three mutants were shown, by phage P1-mediated transduction and complementation analysis, to have mutations in the gyrA gene and the other six in the groE genes. The nucleotide sequence revealed that one of the gyrA mutants has a base change from G to A at position 641 (resulting in an amino acid change from Gly to Glu at position 214) of the gyrA gene. The mutant GyrA proteins produced by these gyrA(ts) mutants were trans-dominant over wild-type GyrA protein for letD tolerance. The wild-type GyrA protein, produced in excess amounts by means of a multicopy plasmid, overcame growth inhibition of the letD gene product. These observations strongly suggest that the A subunit of DNA gyrase is the target of the LetD protein.  相似文献   

3.
We examined the influence of overexpression of LetD (CcdB) protein, an inhibitor of DNA gyrase encoded by the F factor ofEscherichia coli, on DNA supercoiling and induction of heat shock proteins. Cells were transformed with a plasmid carrying the structural gene for LetD protein under control of thetac promoter, and LetD protein was induced by adding isopropylβ-d-thiogalactopyranoside (IPTG) to the culture medium. Analysis by agarose gel electrophoresis in the presence of chloroquine revealed relaxation of plasmid DNA in cells depending on the concentration of IPTG employed for induction. Protein pulse-labeling experiments with [35S]methionine and cysteine revealed that synthesis of DnaK and GroEL proteins was also induced by IPTG, and concentrations necessary for DNA relaxation and induction of the heat shock proteins were much the same. Expression of mutant LetD protein lacking two amino acid residues at the C-terminus induced neither DNA relaxation nor the synthesis of DnaK and GroEL proteins. Induction of wild-type LetD protein but not mutant LetD protein markedly enhanced synthesis ofσ 32. We interpret these results to mean that DNA relaxation in cells caused by the expression of LetD protein induces heat shock proteins via increased synthesis ofσ 32.  相似文献   

4.
We examined the influence of overexpression of LetD (CcdB) protein, an inhibitor of DNA gyrase encoded by the F factor ofEscherichia coli, on DNA supercoiling and induction of heat shock proteins. Cells were transformed with a plasmid carrying the structural gene for LetD protein under control of thetac promoter, and LetD protein was induced by adding isopropyl-d-thiogalactopyranoside (IPTG) to the culture medium. Analysis by agarose gel electrophoresis in the presence of chloroquine revealed relaxation of plasmid DNA in cells depending on the concentration of IPTG employed for induction. Protein pulse-labeling experiments with [35S]methionine and cysteine revealed that synthesis of DnaK and GroEL proteins was also induced by IPTG, and concentrations necessary for DNA relaxation and induction of the heat shock proteins were much the same. Expression of mutant LetD protein lacking two amino acid residues at the C-terminus induced neither DNA relaxation nor the synthesis of DnaK and GroEL proteins. Induction of wild-type LetD protein but not mutant LetD protein markedly enhanced synthesis of 32. We interpret these results to mean that DNA relaxation in cells caused by the expression of LetD protein induces heat shock proteins via increased synthesis of 32.  相似文献   

5.
6.
Negative supercoiling of plasmid DNA in Escherichia coli cells can decrease transiently when exposed to heat shock. The effect of cold shock on DNA supercoiling was examined, and analysis by agarose gel electrophoresis in the presence of chloroquine revealed that negative supercoiling of plasmid DNA in cells increased when cells were exposed to cold shock. This increase was transient and was nil when the cells were pretreated with nalidixic acid, an inhibitor of DNA gyrase. In a mutant deficient in expression of HU protein, the increase in negative supercoiling of DNA by cold shock is less apparent than in wild-type cells. It is proposed that DNA gyrase and HU protein have a role in the DNA supercoiling reaction seen with cold shock.  相似文献   

7.
Rolf Menzel  Martin Gellert 《Cell》1983,34(1):105-113
DNA gyrase is the bacterial enzyme responsible for converting circular DNA to a negatively supercoiled form. We show that the synthesis of DNA gyrase is itself controlled by DNA supercoiling; synthesis is highest when the DNA template is relaxed. The rates of synthesis in vivo of both the A and B subunits of DNA gyase are increased up to 10-fold by treatments that block DNA gyrase activity and decrease the supercoiling of intracellular DNA. Similarly, efficient synthesis of both gyrase subunits in a cell-free S-30 extract depends on keeping the closed circular DNA template in a relaxed conformation. The results suggest that DNA supercoiling in E. coli is controlled by a homeostatic mechanism. Synthesis of the RecA protein and several other proteins is also increased by treatments that relax intracellular DNA.  相似文献   

8.
Changes in DNA linking number have been observed in plasmid DNA purified from E. coli cells after the cells were treated with chloroquine. Chloroquine, a DNA intercalating drug, unwinds the DNA, decreasing the levels of negative supercoiling. Following this in vivo topological perturbation, within minutes DNA gyrase decreases DNA linking number producing more negatively supercoiled DNA topoisomers. Following the removal of the drug from cells, within minutes topoisomerase 1 or DNA gyrase increases the linking number restoring the original level of supercoiling. Analogous changes in DNA linking number after addition of chloroquine are observed in purified plasmid DNA, and in purified SV40 minichromosomes in the presence of exogenous topoisomerase. Changes in linking number are also observed in SV40 chromosomes in isolated nuclei and in SV40 DNA purified from CV-1 cells following topological perturbation with chloroquine. These results suggest that eukaryotic cells may have mechanisms to maintain a defined level of DNA supercoiling.  相似文献   

9.
10.
Induction of supercoiling in plasmid DNA by HU heterotypic and homotypic dimers, a mutant HU-2 (HupAN12), HBs and HB1 proteins with different DNA-binding affinities was investigated in vitro. The abilities of these proteins to induce supercoiling in DNA correlated with their affinities for DNA. Stoichiometrical analysis of HU heterodimers bound to DNA in the complex restraining the negative torsional tension of DNA showed that 12–13 dimers account for a single superhelical turn. The number of supercoils in the plasmid in vivo decreased on inhibition of DNA gyrase with coumermycin, reaching a steady-state level that indicated the existence of a compartment of restrained supercoils. The size of the restrained compartment was reduced in the absence of HU, indicating the participation of HU in constituting this fraction, and was larger on overproduction of HU-2 in the cells. An increased level of DNA gyrase, expressed from a plasmid carrying bothgyr genes, in the cells did not compensate for the deficit of the restrained supercoils caused by HU deficiency, indicating seeming distinct and unrelated action of HU and DNA gyrase in introducing and constraining supercoiling of intracellular DNA.  相似文献   

11.
Novobiocin-Sepharose was prepared by coupling of novobiocin to Epoxy-activated Sepharose 6B and used as an affinity adsorbent. Four novobiocin-binding proteins were isolated from crude extracts of Escherichia coli with molecular weights of 105, 92, 85 and 40 kdal. The two larger proteins were identified as the A subunit (gyrA protein) and the B subunit (gyrB protein) of DNA gyrase topoisomerase II). By this method the two gyrase components can be easily separated and purified in high yield. Although both proteins are involved in the ATP-dependent supercoiling of relaxed plasmid DNA, only the gyrB protein is required for catalyzing the cleavage of ATP. The gyrB protein ATPase activity is competitively inhibited by novobiocin and related coumarin antibiotics. ATP hydrolysis is unaffected by the addition of either gyrA protein or DNA but stimulated in the presence of both.  相似文献   

12.
Shifting Escherichia coli from aerobic to anaerobic growth caused changes in the ratio of [ATP]/[ADP] and in negative supercoiling of chromosomal and plasmid DNA. Shortly after lowering oxygen tension, both [ATP]/[ADP] and supercoiling transiently decreased. Under conditions of exponential anaerobic growth, both were higher than under aerobic conditions. These correlations may reflect an effect of [ATP]/[ADP] on DNA gyrase, since in vitro [ATP]/[ADP] influences the level of plasmid supercoiling attained when gyrase is either introducing or removing supercoils. When the supercoiling activity of gyrase was perturbed by a mutation in gyrB, a shift to anaerobic conditions resulted in plasmid supercoil relaxation similar to that seen with wild-type. However, the low level of supercoiling in the mutant persisted during a time when supercoiling in wild-type recovered and then exceeded aerobic levels. Thus, changes in oxygen tension can alter DNA supercoiling through an effect on gyrase, and correlations exist between changes in supercoiling and changes in the intracellular ratio of [ATP]/[ADP].  相似文献   

13.
Induction of supercoiling in plasmid DNA by HU heterotypic and homotypic dimers, a mutant HU-2 (HupAN12), HBs and HB1 proteins with different DNA-binding affinities was investigated in vitro. The abilities of these proteins to induce supercoiling in DNA correlated with their affinities for DNA. Stoichiometrical analysis of HU heterodimers bound to DNA in the complex restraining the negative torsional tension of DNA showed that 12–13 dimers account for a single superhelical turn. The number of supercoils in the plasmid in vivo decreased on inhibition of DNA gyrase with coumermycin, reaching a steady-state level that indicated the existence of a compartment of restrained supercoils. The size of the restrained compartment was reduced in the absence of HU, indicating the participation of HU in constituting this fraction, and was larger on overproduction of HU-2 in the cells. An increased level of DNA gyrase, expressed from a plasmid carrying bothgyr genes, in the cells did not compensate for the deficit of the restrained supercoils caused by HU deficiency, indicating seeming distinct and unrelated action of HU and DNA gyrase in introducing and constraining supercoiling of intracellular DNA.  相似文献   

14.
DNA gyrase can supercoil DNA circles as small as 174 base pairs.   总被引:9,自引:2,他引:7       下载免费PDF全文
DNA gyrase introduces negative supercoils into closed-circular DNA using the free energy of ATP hydrolysis. Consideration of steric and thermodynamic aspects of the supercoiling reaction indicates that there should be a lower limit to the size of DNA circle which can be supercoiled by gyrase. We have investigated the supercoiling reaction of circles from 116-427 base pairs (bp) in size and have determined that gyrase can supercoil certain relaxed isomers of circles as small as 174 bp, dependent on the final superhelix density of the supercoiled product. Furthermore, this limiting superhelical density (-0.11) is the same as that determined for the supercoiling of plasmid pBR322. We also find that although circles in the range 116-152 bp cannot be supercoiled, they can nevertheless be relaxed by gyrase when positively supercoiled. These data suggest that the conformational changes associated with the supercoiling reaction can be carried out by gyrase in a circle as small as 116 bp. We discuss these results with respect to the thermodynamics of DNA supercoiling and steric aspects of the gyrase mechanism.  相似文献   

15.
E Wahle  A Kornberg 《The EMBO journal》1988,7(6):1889-1895
A protein in extracts of Escherichia coli that specifically binds the stabilizing par sequence of pSC101 was identified as DNA gyrase. The purified enzyme protects par against digestion by DNase I and exonuclease III. Competition assays demonstrate that gyrase has a 40-fold higher affinity for the 100-bp par sequence than for nonspecific DNA and that par is the major gyrase-binding site in pSC101 derivatives used in this and other studies. Within par, AT-rich sequences occur with a pronounced 10-bp periodicity that is shifted by 5 bp from a similar periodicity of GC-rich sequences. As judged by DNase I digestion, the GC sequences are exposed on the outside of the DNA wrapped around gyrase. The data suggest that the site-specificity of DNA gyrase may be partly determined by the bendability of the DNA. A 4-bp deletion that interferes with Par function in vivo also reduces the affinity for gyrase in vitro. However, a deletion of par causes little reduction in superhelical density in vivo. We conclude that DNA gyrase, while involved in the Par function, may not affect plasmid stability through its supercoiling activity or by an influence on DNA replication.  相似文献   

16.
17.
The relationship between the loss of culturability of Escherichia coli cells in seawater and the DNA supercoiling level of a reporter plasmid (pUC8) have been studied under different experimental conditions. Transfer to seawater of cells grown at low osmolarity decreased their ability to grow without apparent modification of the plasmid supercoiling. We found that E. coli cells could be protected against seawater-induced loss of culturability by increasing their DNA-negative supercoiling in response to environmental factors: either a growth at high osmolarity before the transfer to seawater, or addition of organic matter (50-mg/l peptone) in seawater. We further found conditions where a DNA-induced relaxation was accompanied by an increase in seawater sensitivity. Indeed, inactivation of either one of the subunits A and B of DNA gyrase, which leads to important DNA relaxation, was accompanied in both cases by an increased loss of culturability of conditional mutants after transfer to seawater which could not be explained uniquely by the increase in the temperature required to inactivate the gyrase. Similarly, a strain harbouring a mutation in topoisomerase I, compensated by another mutation in subunit B of the gyrase, was more sensitive to seawater than the isogenic wild-type cell and this greater sensitivity was correlated to a relaxation of plasmid DNA. Again, in these different cases, a previous growth at high osmolarity protected against this seawater sensitivity. We thus propose that the ability of E. coli cells to survive in seawater and maintain their ability to grow on culture media could be linked, at least in part, to the topological state of their DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Nucleotide sequence analysis revealed that the compensatory gyrA mutation in Escherichia coli DM750 affects DNA supercoiling by interchanging the identities of Ala-569 and Thr-586 in the DNA gyrase A subunit. These residues flank Arg-571, a site for trypsin cleavage that splits gyrase A protein between DNA breakage-reunion and DNA-binding domains. The putative interdomain locations of the DM750 mutation and that of E. coli DM800 (in gyrase B protein) suggests that these compensatory mutations may reduce DNA supercoiling activity by altering allosteric interactions in the gyrase complex.  相似文献   

19.
We have constructed a clone which over-produces a 33 kDa protein representing the C-terminal portion of the Escherichia coli DNA gyrase A subunit. This protein has no enzymic activity of its own, but will form a complex with a 64 kDa protein (representing the N-terminal part of the A subunit) and the gyrase B subunit, that will efficiently catalyse DNA supercoiling. We show that the 33 kDa protein can bind to DNA on its own in a manner which induces positive supercoiling of the DNA. We propose that the 33 kDa protein represents a domain of the gyrase A subunit which is involved in the wrapping of DNA around DNA gyrase.  相似文献   

20.
Conter A 《Journal of bacteriology》2003,185(17):5324-5327
The relationship between the survival of Escherichia coli during long-term starvation in rich medium and the supercoiling of a reporter plasmid (pBR322) has been studied. In aerated continuously shaken cultures, E. coli lost the ability to form colonies earlier in rich NaCl-free Luria-Bertani medium than in NaCl-containing medium, and the negative supercoiling of plasmid pBR322 declined more rapidly in the absence of NaCl. Addition of NaCl at the 24th hour restored both viability and negative supercoiling in proportion to the concentration of added NaCl. Addition of ofloxacin, a quinolone inhibitor of gyrase, abolished rescue by added NaCl in proportion to the ofloxacin added. This observation raises the possibility that cells had the ability to recover plasmid supercoiling even if nutrients were not available and could survive during long-term starvation in a manner linked, at least in part, to the topological state of DNA and gyrase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号