首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 240 毫秒
1.
Dai Q  Castellino FJ  Prorok M 《Biochemistry》2004,43(41):13225-13232
Conantokins are short (17-27 amino acid residues), gamma-carboxyglutamate (Gla)-rich peptide components of the venoms of marine snails of the genus Conus. They display high apo and/or Ca(2+)-induced helicity and act as potent and selective inhibitors of the N-methyl-d-aspartate receptor (NMDAR). We have previously established that one of the conantokins, conantokin-G (con-G), self-associates in the presence of Ca(2+) with high specificity for antiparallel chain orientation [Dai, Q., Prorok, M., and Castellino, F. J. (2004) J. Mol. Biol. 336, 731-744]. The dimerization appears to be driven by interhelical Ca(2+) coordination between the following residue pairings: Gla(3)-Gla(14)('), Gla(7)-Gla(10)('), Gla(10)-Gla(7)('), and Gla(14)-Gla(3)('). A second member of the conantokin family, conantokin-T (con-T), shares sequence identity with con-G at 8 of 21 amino acids, including 4 Gla residues. These similarities notwithstanding, several primary and secondary structural differences exist between con-T and con-G. Particularly notable is that con-T contains a Lys, rather than a Gla, at position 7. Moreover, unlike con-G, con-T does not undergo Ca(2+)-triggered self-assembly. In the present study, sedimentation equilibrium ultracentrifugation is employed to demonstrate that a single amino acid replacement analogue of con-T, con-T[K7gamma], assumes a dimeric superstructure in the presence of Ca(2+) at pH values consistent with the ionization of Gla carboxylate groups. Furthermore, HPLC-monitored thiol-disulfide folding and rearrangement assays with Cys-containing con-T variants suggest that the relative chain alignment preference in the noncovalent complex is antiparallel. Our results suggest that interchain Ca(2+) coordination in con-T[K7gamma] is incumbent upon an "i, i + 4, i +7, i +11" arrangement of Gla residues, as occurs in native con-G.  相似文献   

2.
Whole cell voltage clamp recordings were performed to assess the ability of conantokin-G (con-G), conantokin-T (con-T), and a 17-residue truncated form of conantokin-R (con-R[1-17]) to inhibit N-methyl-d-aspartate (NMDA)-evoked currents in human embryonic kidney 293 cells transiently expressing various combinations of NR1a, NR1b, NR2A, and NR2B receptor subunits. Con-T and con-R[1-17] attenuated ion currents in cells expressing NR1a/NR2A or NR1a/NR2B. Con-G did not affect NMDA-evoked ionic currents in cells expressing NR1a/NR2A, but it showed inhibitory activity in cells expressing NR1a/NR2B receptors and the triheteromeric combination of NR1a/NR2A/NR2B. An Ala-rich con-G analog, con-G[Q6G/gamma7K/N8A/gamma10A/gamma14A/K15A/S16A/N17A] (Ala/con-G, where gamma is Gla), in which all nonessential amino acids were altered to Ala residues, manifested subunit specificity similar to that of con-G, suggesting that the replaced residues are not responsible for selectivity in the con-G framework. A sarcosine-containing con-T truncation analog, con-T[1-9/G1Src/Q6G], inhibited currents in NR1a/NR2A and NR1a/NR2B receptors, eliminating residues 10-21 as mediators of the broad subunit selectivity of con-T. In contrast to the null effects of con-G and Ala/con-G at a NR1a/NR2A-containing receptor, some inhibition ( approximately 40%) of NMDA-evoked currents was effected by these peptides in cells expressing NR1b/NR2A. This finding suggests that the presence of exon 5 in NR1b plays a role in the activity of the conantokins. Analysis of various conantokin analogs demonstrated that Leu(5) of con-G is an important determinant of conantokin selectivity. Taken as a whole, these results suggest that the important molecular determinants on conantokins responsible for NMDA receptor activity and specificity are discretely housed in specific residues of these peptides, thus allowing molecular manipulation of the NMDA receptor inhibitory properties of the conantokins.  相似文献   

3.
We report the discovery and characterization of three conantokin peptides from the venom of Conus parius. Each peptide (conantokin-Pr1, -Pr2, and -Pr3) contains 19 amino acids with three gamma-carboxyglutamate (Gla) residues, a post-translationally modified amino acid characteristic of conantokins. The new peptides contain several amino acid residues that differ from previous conantokin consensus sequences. Notably, the new conantokins lack Gla at the 3rd position from the N terminus, where the Gla residue is replaced by either aspartate or by another post-translationally modified residue, 4-trans-hydroxyproline. Conantokin-Pr3 is the first conantokin peptide to have three different post-translational modifications. Conantokins-Pr1 and -Pr2 adopt alpha-helical conformations in the presence of divalent cations (Mg2+ and Ca2+) but are generally unstructured in the absence of divalent cations. Conantokin-Pr3 adopts an alpha-helical conformation even in the absence of divalent cations. Like other conantokins, the new peptides induced sleep in young mice and hyperactivity in older mice upon intracranial injection. Electrophysiological assays confirmed that conantokins-Pr1, -Pr2, and -Pr3 are N-methyl-d-aspartate (NMDA) receptor antagonists, with highest potency for NR2B-containing NMDA receptors. Conantokin-Pr3 demonstrated approximately 10-fold selectivity for NR2B-containing NMDA receptors. However, conantokin-Pr2 showed minimal differences in potency between NR2B and NR2D. Conantokins-Pr1, -Pr2, and -Pr3 all demonstrated high specificity of block for NMDA receptors, when tested against various ligand-gated ion channels. Conus parius conantokins allow for a better definition of structural and functional features of conantokins as ligands targeting NMDA receptors.  相似文献   

4.
The modulation of recombinant NMDA receptors by conantokin-G (con-G) and Ala7-conantokin-G (Ala7-Con-G) was investigated in Xenopus oocytes injected with capped RNA coding for NR1 splice variants and NR2 subunits using the two-electrode voltage clamp technique. Glutamate exhibited a marginally higher apparent affinity for NR2A-containing receptors than NR2B-containing receptors, regardless of the NR1 subunit present. Conantokins were bath applied to give cumulative concentration responses in the presence of 3 and 30 mum glutamate. Both contantokins exhibited biphasic concentration-response relationships at NR2A-containing NMDA receptors, producing potentiation at low conantokin concentrations and inhibition at high concentrations. These effects were stronger with glutamate concentrations near its EC50, and less marked at saturating concentrations. In contrast, the conantokin concentration-response relation was monophasic and inhibitory at NR2B-containing receptors. We conclude that the combinations of subunits that comprise the NMDA receptor complex influence conantokin and glutamate affinities and the nature of the responses to conantokins.  相似文献   

5.
Conantokin-G (con-G) is a small, gamma-carboxyglutamic acid (Gla)-containing peptide that functions neurophysiologically by inhibiting the N-methyl-d-aspartate receptor (NMDAR). In the current study, the receptor binding properties of an alanine-rich, Gla-deficient con-G variant, Ala-con-G, were assessed following tracer radioiodination with 125I. Direct binding experiments with [125I]Ala-con-G yielded a single site defined by a Kd value of 516 +/- 120 nm. Displacement of [125I]Ala-con-G binding by Ala-con-G resulted in 100% displacement with an IC50 value of 564 +/- 33 nm, while heterologous displacement by con-G[S16Y], con-G, con-T, and con-R[1-17] yielded IC50 values in the range of 15-45 microm. No displacement was observed with d-gamma-con-G or con-G[L5A], analogs that are inactive at NMDARs. Specific [125I]Ala-con-G binding was displaced by NMDA and 2-amino-5-phosphopentanoic acid in a dose-dependent manner, suggesting an interaction at the glutamate binding site. The direct binding of [125I]Ala-con-G to adult rat brain sections revealed an anatomical distribution of binding sites in all regions known to contain the NR2B subunit of the NMDAR. These results constitute the only known demonstration of the direct binding of a radiolabeled conantokin to the NMDARs present in rat brain membrane preparations and rat brain sections, and suggest that radiolabeled Ala-con-G, and similar conantokin derivatives, may find utility as probes of NMDARs in a variety of systems.  相似文献   

6.
We have previously elucidated a new paradigm for the metal ion-induced helix-helix assembly in the natural γ-carboxyglutamic acid (Gla)-containing class of conantokin (con) peptides, typified by con-G and a variant of con-T, con-T[K7Gla], independent of the hydrophobic effect. In these “metallo-zipper” structures, Gla residues spaced at i, i + 4, i + 7, i + 11 intervals, which is similar to the arrangement of a and d residues in typical heptads of coiled-coils, coordinate with Ca2+ and form specific antiparallel helical dimers. In order to evaluate the common role of Gla residues in peptide self-assembly, we extend herein the same Gla arrangement to designed peptides: NH2-(γLSγEAK)3-CONH2 (peptide 1) and NH2-γLSγEAKγLSγQANγLSγKAE-CONH2 (peptide 2). Peptide 1 and peptide 2 exhibit no helicity alone, but undergo structural transitions to helical conformations in the presence of a variety of divalent cations. Sedimentation equilibrium ultracentrifugation analyses showed that peptide 1 and peptide 2 form helical dimers in the presence of Ca2+, but not Mg2+. Folding and thiol-disulfide rearrangement assays with Cys-containing peptide variants indicated that the helical dimers are mixtures of antiparallel and parallel dimers, which is different from the strict antiparallel strand orientations of con-G and con-T[K7γGla] dimers. These findings suggest that the Gla arrangement, i, i + 4, i + 7, i + 11, i + 14, plays a key role in helix formation, without a strict adherence to strand orientation of the helical dimer.  相似文献   

7.
Helix-helix interactions, such as those that occur in coiled-coil domains, four-helix bundles, or membrane-spanning helical bundles, are important to the structural organization and function of numerous proteins. However, tractable peptide models for studying such structural elements have been limited to synthetic analogs of coiled-coil protein domains and de novo designed peptides. The present study provides evidence that conantokin-G (con-G), a gamma-carboxyglutamate (Gla)-rich neuroactive peptide from a venomous marine snail, can self-associate in the presence of certain divalent metal cations. Sedimentation equilibrium analyses of con-G show that Ca2+ binding promotes peptide dimerization, while the addition of the tighter binding divalent cations, Mg2+, Zn2+, and Mn2+, does not result in intermolecular association. The effects of specific residue replacements indicate that an i, i + 4, i + 7, i + 11 arrangement of Gla residues is essential for con-G self-assembly. To determine the relative chain orientation of the dimeric assembly, distributions of Cys-containing con-G variants were examined in thiol-disulfide rearrangement assays and the results were consistent with an antiparallel alignment. Our data suggest that the driving force for con-G dimerization stems from the appropriate balance of interchain and intrachain metal ion coordination by Gla residues in similar locations. These findings suggest a new role for Gla residues and accompanying cation binding in the stabilization of interstrand helix association in a natural product and provide a model for controlled assembly of peptide chains or segments of larger proteins.  相似文献   

8.
Conantokin-G (con-G) and conantokin-T (con-T) are naturally occurring gamma-carboxyglutamate (Gla)-containing peptides that interact with multivalent cations in functionally relevant manners. Selective 13C-enrichment of Cgamma and Cdelta in each of the Gla residues has allowed metal binding affinities to be measured at individual side chains. Con-T possesses two metal binding sites, one with high affinity at Gla10/Gla14 and another with weak binding at Gla3/Gla4. Con-G contains two sites of comparable low affinity for Ca2+. Analysis of the 13C line-widths of con-G in the presence of Mg2+ allowed the order of metal binding to be determined, with Gla10/Gla14 loading before the Gla3/Gla4/Gla7 cluster. While the variant peptide, apo-con-T[Lys7Gla], was shown to have a very low alpha-helical content, this peptide binds a second metal with much greater affinity than wild-type con-T. This provides additional evidence that Gla7 in con-G is primarily responsible for destabilizing the apo-form, but is an important ligand for metal chelation. The residue-specific alpha-helical stabilities of con-G and con-T in their metal-free and metal-loaded states were estimated by determining rates of proton exchange from backbone peptide bond amides with deuterium atoms from 2H20-containing solvents. For both peptides, the lifetimes of protons on several peptide bond amides increased as metals of higher affinity were bound to the peptides, with the longest half-lives found in the region of the alpha-helical turn stabilized by the Gla10/Gla14 metal coordination site. We propose that Gla10 and Gla14 constitute the primary tight metal ion binding site in both peptides. This detailed analysis with physiologically relevant metal cations is crucial for deciphering the roles of critical amino acids in the bioactivity of the conantokin peptides.  相似文献   

9.
Amino acid determinants for NMDA receptor inhibition by conantokin-T   总被引:3,自引:0,他引:3  
Several derivatives of conantokin-T (con-T), a naturally occurring, gamma-carboxyglutamate (Gla)-containing peptide with NMDA receptor (NMDAR) antagonist properties, were synthesized and evaluated for their ability to displace [(3)H]MK-801 from adult rat forebrain membranes. Analyses of progressive C-terminal truncation analogs of the parent 21-mer revealed gradual losses in activity with decreased chain length. In this series, con-T[1-8] was identified as the shortest variant capable of manifesting inhibitory activity (< 1% of the parent peptide). Ala substitution studies of individual residues identified Gly1, Gla3, Met8 and Leu12 as important for activity, while Glu2, Gla4 and Tyr5 were shown to be essential in this regard. The effect of side-chain length and charge in the N-terminal region was probed by single amino acid replacements. No correlation was observed between potencies and circular dichroism-derived helical contents of the con-T derivatives. Further elaboration of structure-function relationships in con-T was effected through the design and synthesis of helically constrained and destabilized analogs. The results of the current study were compared with those of a previous investigation on con-G, a related conantokin. Substantial differences in activity requirements were noted between the peptides, particularly in the C-terminal regions. Chimeras of con-T and con-G were generated and revealed virtually no interchangeability of residues between these two peptides. Finally, single amino acid substitutions that resulted in analogs with enhanced inhibitory properties were combined to yield superior conantokin-based NMDAR inhibitors.  相似文献   

10.
The biophysical properties of NMDA receptors are thought to be critical determinants involved in the regulation of long-term synaptic plasticity during neocortical development. NMDA receptor channel properties are strongly dependent on the subunit composition of heteromeric NMDA receptors. During neocortical development in vivo, the expression of the NMDA receptor 2A (NR2A) subunit is up-regulated at the mRNA and protein level correlating with changes in the kinetic and pharmacological properties of functional NMDA receptors. To investigate the developmental regulation of NMDA receptor subunit expression, we studied NR2 mRNA expression in cultured neocortical neurons. With increasing time in culture, they showed a similar up-regulation of NR2A mRNA expression as described in vivo. As demonstrated by chronic blockade of postsynaptic glutamate receptors in vitro, the regulation of NR2A mRNA was strongly dependent on synaptic activity. In contrast, NR2B mRNA expression was not influenced by activity blockade. Moreover, as shown pharmacologically, the regulation of NR2A mRNA expression was mediated by postsynaptic Ca(2+) influx through both NMDA receptors and L-type Ca(2+) channels. It is interesting that even relatively weak expression of NR2A mRNA was correlated with clearly reduced sensitivity of NMDA receptor-mediated whole-cell currents against the NR2B subunit-specific antagonist ifenprodil. Developmental changes in the expression of NR1 mRNA splice variants were also strongly dependent on synaptic activity and thus might, in addition to regulation of NR2 subunit expression, contribute to developmental changes in the properties of functional NMDA receptors. In summary, our results demonstrate that synaptic activity is a key factor in the regulation of NMDA receptor subunit expression during neocortical development.  相似文献   

11.
Amyloid beta (Aβ) oligomers accumulate in the brain tissue of Alzheimer disease patients and are related to disease pathogenesis. The precise mechanisms by which Aβ oligomers cause neurotoxicity remain unknown. We recently reported that Aβ oligomers cause intracellular Ca(2+) overload and neuronal death that can be prevented by NMDA receptor antagonists. This study investigated whether Aβ oligomers directly activated NMDA receptors (NMDARs) using NR1/NR2A and NR1/NR2B receptors that were heterologously expressed in Xenopus laevis oocytes. Indeed, Aβ oligomers induced inward non-desensitizing currents that were blocked in the presence of the NMDA receptor antagonists memantine, APV, and MK-801. Intriguingly, the amplitude of the responses to Aβ oligomers was greater for NR1/NR2A heteromers than for NR1/NR2B heteromers expressed in oocytes. Consistent with these findings, we observed that the increase in the cytosolic concentration of Ca(2+) induced by Aβ oligomers in cortical neurons is prevented by AP5, a broad spectrum NMDA receptor antagonist, but slightly attenuated by ifenprodil which blocks receptors with the NR2B subunit. Together, these results indicate that Aβ oligomers directly activate NMDA receptors, particularly those with the NR2A subunit, and further suggest that drugs that attenuate the activity of such receptors may prevent Aβ damage to neurons in Alzheimer?s disease.  相似文献   

12.
13.
Using molecular phylogeny has accelerated the discovery of peptidic ligands targeted to ion channels and receptors. One clade of venomous cone snails, Asprella, appears to be significantly enriched in conantokins, antagonists of N-methyl d-aspartate receptors (NMDARs). Here, we describe the characterization of two novel conantokins from Conus rolani, including conantokin conRl-B that has shown an unprecedented selectivity for blocking NMDARs that contain NR2B subunits. ConRl-B shares only some sequence similarity with the most studied NR2B selective conantokin, conG. The divergence between conRl-B and conG in the second inter-Gla loop was used to design analogues for structure-activity studies; the presence of Pro10 was found to be key to the high potency of conRl-B for NR2B, whereas the ε-amino group of Lys8 contributed to discrimination in blocking NR2B- and NR2A-containing NMDARs. In contrast to previous findings for Tyr5 substitutions in other conantokins, conRl-B[L5Y] showed potencies on the four NR2 NMDA receptor subtypes that were similar to those of the native conRl-B. When delivered into the brain, conRl-B was active in suppressing seizures in the model of epilepsy in mice, consistent with NR2B-containing NMDA receptors being potential targets for antiepileptic drugs. Circular dichroism experiments confirmed that the helical conformation of conRl-B is stabilized by divalent metal ions. Given the clinical applications of NMDA antagonists, conRl-B provides a potentially important pharmacological tool for understanding the differential roles of NMDA receptor subtypes in the nervous system. This work shows the effectiveness of coupling molecular phylogeny, chemical synthesis, and pharmacology for discovering new bioactive natural products.  相似文献   

14.
Chronic treatment of neurons with either ethanol or competitive and noncompetitive antagonists of NMDA receptors leads to enhanced expression of NMDA receptor density and function in neurons. The signal transduction pathways for such receptor up-regulation are not known. The focus of the present study was on the role of Ca2+ entry into neurons, either through receptor or voltage-gated channels, in the expression of the NMDA receptor subunit NR1 and the 71-kDa glutamate-binding protein (GBP) of a glutamate/NMDA receptor-like complex. Chronic inhibition of NMDA receptors in cortical neurons in primary cultures by either 100 mM ethanol or 100 microM 2-amino-5-phosphonopentanoic acid (2-AP5) increased the expression of NR1 and GBP. The effect of 2-AP5 on the expression of the two proteins was not additive with that of ethanol when neuronal cultures were treated with both agents at the same time. However, the effects of ethanol on NR1 and GBP expression were blocked by the simultaneous treatment with NMDA (50 microM). Activation or inhibition of other glutamate ionotropic receptors had no effect on the expression of NR1 and GBP. The inhibition of L- or N-type voltage-sensitive Ca2+ channels and voltage-gated Na+ channels also had little effect on the expression of either protein; neither did exposure of neurons to elevated extracellular Ca2+ concentrations (3 or 5 mM). On the other hand, treatment of neurons for 48 h with the intracellular Ca2+ chelator BAPTA-AM as well as partial chelation of extracellular Ca2+ with EGTA caused an up-regulation in NR1 and GBP expression. The enhanced expression of NR1 in neurons treated for 48 h with either ethanol or EGTA was correlated with increases in the activity of NMDA receptors demonstrated as a doubling of the NMDA-stimulated rise in intracellular free Ca2+ concentration. The effects of chronic administration of EGTA on both NR1 expression as well as NMDA receptor function were probably related to an acute inhibition by EGTA of NMDA-induced Ca2+ influx into neurons. It appears that the expression of both the NR1 subunit of NMDA receptors and the GBP of a receptor-like complex is regulated by intracellular Ca2+, especially that entering through NMDA receptor ion channels.  相似文献   

15.
Abstract: Previous studies in brain and recombinant NMDA receptors have observed heterogeneity in NMDA-sensitive glutamate binding site. We further characterized the glutamate site assembled from NR1a, NR2A, and NR2B NMDA receptor subunits using l -[3H]glutamate and [3H]CGP 39653 binding assays. In contrast to earlier reports, we demonstrate a unique pharmacology for the NR2A subunit alone, which has high affinity for agonists but low affinity for competitive antagonists compared with heteromeric combinations of NR1a + NR2A and NR1a + NR2B. Similar to previous reports, we find unequal antagonist affinity between heteromeric combinations of NR1a + NR2A and NR1a + NR2B. However, unlike earlier reports, we describe two binding components within each heteromeric transfection that more closely resemble data obtained for binding to brain membranes. In addition, we show Mg2+ can alter [3H]CGP 39653 binding in both the NR1a + NR2A and the NR1a + NR2B combination, thus allowing comparison of the [3H]CGP 39653-labeled site between the two heteromeric combinations. Agonist inhibition of [3H]CGP 39653 binding revealed differences between the heteromeric combinations as well as within each heteromeric combination, the latter of which more closely resembled results from brain. These results further determine components of the agonist and antagonist binding sites of the NMDA receptor as well as suggest additional possible mechanisms of heterogeneity of the glutamate site in the brain.  相似文献   

16.
Ca2+ influx through the N-methyl-d-aspartate (NMDA)-type glutamate receptor triggers activation and postsynaptic accumulation of Ca2+/calmodulin-dependent kinase II (CaMKII). CaMKII, calmodulin, and alpha-actinin directly bind to the short membrane proximal C0 domain of the C-terminal region of the NMDA receptor NR1 subunit. In a negative feedback loop, calmodulin mediates Ca2+-dependent inactivation of the NMDA receptor by displacing alpha-actinin from NR1 C0 upon Ca2+ influx. We show that Ca2+-depleted calmodulin and alpha-actinin simultaneously bind to NR1 C0. Upon addition of Ca2+, calmodulin dislodges alpha-actinin. Either the N- or C-terminal half of calmodulin is sufficient for Ca2+-induced displacement of alpha-actinin. Whereas alpha-actinin directly antagonizes CaMKII binding to NR1 C0, the addition of Ca2+/calmodulin shifts binding of NR1 C0 toward CaMKII by displacing alpha-actinin. Displacement of alpha-actinin results in the simultaneous binding of calmodulin and CaMKII to NR1 C0. Our results reveal an intricate mechanism whereby Ca2+ functions to govern the complex interactions between the two most prevalent signaling molecules in synaptic plasticity, the NMDA receptor and CaMKII.  相似文献   

17.
Specific proteolysis of the NR2 subunit at multiple sites by calpain   总被引:4,自引:0,他引:4  
The NMDA subtype of glutamate receptor plays an important role in the molecular mechanisms of learning, memory and excitotoxicity. NMDA receptors are highly permeable to calcium, which can lead to the activation of the calcium-dependent protease, calpain. In the present study, the ability of calpain to modulate NMDA receptor function through direct proteolytic digestion of the individual NMDA receptor subunits was examined. HEK293t cells were cotransfected with the NR1a/2A, NR1a/2B or NR1a/2C receptor combinations. Cellular homogenates of these receptor combinations were prepared and digested by purified calpain I in vitro. All three NR2 subunits could be proteolyzed by calpain I while no actin or NR1a cleavage was observed. Based on immunoblot analysis, calpain cleavage of NR2A, NR2B and NR2C subunits was limited to their C-terminal region. In vitro calpain digestion of fusion protein constructs containing the C-terminal region of NR2A yielded two cleavage sites at amino acids 1279 and 1330. Although it has been suggested that calpain cleavage of the NMDA receptor may act as a negative feedback mechanism, the current findings demonstrated that calpain cleavage did not alter [(125)I]MK801 binding and that receptors truncated to the identified cleavage sites had peak intracellular calcium levels, (45)Ca uptake rates and basal electrophysiological properties similar to wild type.  相似文献   

18.
N-methyl-d-aspartate (NMDA) receptors play major roles in synaptic transmission and plasticity, as well as excitotoxicity. NMDA receptors are thought to be tetrameric complexes mainly composed of NMDA receptor (NR)1 and NR2 subunits. The NR1 subunits are required for the formation of functional NMDA receptor channels, whereas the NR2 subunits modify channel properties. Biochemical and functional studies indicate that subunits making up NMDA receptors are organized into a dimer of dimers, and the N termini of the subunits are major determinants for receptor assembling. Here we used a biophysical approach, fluorescence resonance energy transfer, to analyze the assembly of intact, functional NMDA receptors in living cells. The results showed that NR1, NR2A, and NR2B subunits could form homodimers when they were expressed alone in HEK293 cells. Subunit homodimers were also found existing in heteromeric NMDA receptors formed between NR1 and NR2 subunits. These findings are consistent with functional NMDA receptors being arranged as a dimer of dimers. In addition, our data indicated that the conformation of NR1 subunit homodimers was affected by the partner NR2 subunits during the formation of heteromeric receptor complexes, which might underlie the mechanism by which NR2 subunits modify NMDA receptor function.  相似文献   

19.
Conantokins的结构与功能   总被引:2,自引:0,他引:2  
Conantokins(con-)是芋螺活性肽的一个重要家族,能特异作用于N-甲基-D-天门冬氨酸受体(NMDAR)及其亚型, 是目前为止发现的该种受体的第一种肽类抑制剂. 本文介绍了conantokins的生化特征、生物合成机制以及对NMDA受体不同亚基的选择性抑制特性,重点综述了conantokins在有无金属离子存在下的NMR结构、结构与功能的关系,对含有特定Gla排列的con-G及conantokin突变体在Ca2+作用下形成新颖的双螺旋结构的机制进行了探讨,对conantokins在镇痛、治疗癫痫、神经保护等药学用途进行了简要概括.  相似文献   

20.
Cyclodextrins (CDs) are cyclic oligosaccharides composed of a lipophilic central cavity and a hydrophilic outer surface. Some CDs are capable of extracting cholesterol from cell membranes and can affect function of receptors and proteins localized in cholesterol-rich membrane domains. In this report, we demonstrate the neuroprotective activity of some CD derivatives against oxygen-glucose deprivation (OGD), N-methyl-D-aspartic acid (NMDA) and glutamate in cortical neuronal cultures. Although all CDs complexed with NMDA or glutamate, only beta-, methylated beta- and sulfated beta-CDs displayed neuroprotective activity and lowered cellular cholesterol. Only CDs that lowered cholesterol levels redistributed the NMDA receptor NR2B subunit, PSD-95 (postsynaptic density protein 95 kDa) and neuronal nitric oxide synthase (nNOS) from Triton X-100 insoluble membrane domains to soluble fractions. Cholesterol repletion counteracted the ability of methylated beta-CD to protect against NMDA toxicity, and reversed NR2B, PSD-95 and nNOS localization to Triton X-100 insoluble membrane fraction. Surprisingly, neuroprotective CDs had minimal effect on NMDA receptor-mediated increases in intracellular Ca(2+) concentration ([Ca(2+)](i)), but did suppress OGD-induced increases in [Ca(2+)](i). beta-CD, but not Mbeta-CD, also caused a slight block of NMDA-induced currents, suggesting a minor contribution to neuroprotection by direct action on NMDA receptors. Taken together, data suggest that cholesterol extraction from detergent-resistant microdomains affects NMDA receptor subunit distribution and signal propagation, resulting in neuroprotection of cortical neuronal cultures against ischemic and excitotoxic insults. Since cholesterol-rich membrane domains exist in neuronal postsynaptic densities, these results imply that synaptic NMDA receptor subpopulations underlie excitotoxicity, which can be targeted by CDs without affecting overall neuronal Ca(2+) levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号