首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A GC–EIMS method to determine the structure of the fatty acid chains in cyclic lipopeptides is described. The structure of the fatty acid chains can be determined by the characteristic peaks of the MS spectrogram according to the fact that the alpha cleavage predominates the MS of a fatty acid with amino and hydroxy groups, while the McLafferty rearrangement predominates the MS of one without amino or hydroxy group. The characteristics of the strongest peaks of 103 and 102 in MS spectrograms due to alpha cleavage represent the β-hydroxy-fatty acid and the β-amino fatty acid, respectively; the strongest peak of 117 due to alpha cleavage and the relatively weak peak of 88 due to McLafferty rearrangement indicate the β-hydroxy-fatty acid with a branched methyl group at its alpha position. The strongest peak of 74 due to McLafferty suggests the fatty acid without hydroxy or amino group. The ratio of relative intensity (I43/I57) characterizes the branches of alkyl chains. The greater I43/I57 corresponds to an iso alkyl, and the smaller I43/I57 corresponds to an anteiso alkyl. This method can be used to determine the full structure of the fatty acid chains in lipopeptides.  相似文献   

2.
A TOF MS/MS method to directly determine the amino acid sequence in a cyclic lipopeptide without its hydrolysis is described. The fragments of the peptide and the hydrocarbon chains were identified through comparing the MS of two analogues of the lipopeptide; the connecting relationship of amino acid residues in the lipopeptide was determined based on the difference of mass to charge ratio between peaks in the MS spectra and the amino acid analysis; and finally, according to the mechanism of double hydrogen transfer(DHT) the C-terminal of peptide and hydroxy aliphatic acid in the lipopeptide was directly determined without the hydrolysis. The determined sequence of amino acid residues in the cyclic lipopeptide is also supported by the rest peaks in the MS spectra grounded on simple fragmenting mechanism. This method can be used to determine the amino acid sequence in any aliphatic acid loop-inlaying cyclic lipopeptides.  相似文献   

3.
Lipopeptides are amphiphilic compounds which contain both hydrophobic fatty acid moieties and amphiphilic peptide moieties. From the cell-free broth of Bacillus subtilis HSO121, eight cyclic lipopeptides were isolated by reversed-phase high performance liquid chromatography (RP-HPLC). The peptide part of each lipopeptide was elucidated according to electrospray ionization quadruple-time-of-flight mass spectrometry (ESI Q-TOF MS) and the fatty acid part was analyzed by electroionization gas chromatography/mass spectrometry (EI GC/MS). It showed that fractions 1-8 had molecular masses of 1007, 1021, 1021, 1035, 1035, 1035, 1063, and 1049, respectively. Analysis of hydrolyzed lipopeptides revealed that they had invariant amino acid compositions. The differences in molecular weights represent changes in the number of methylene groups and different types of branched chains in fatty acids. Peptide sequences of two of the eight lipopeptides appeared to be N-Asp-Leu-Leu-Val-Glu-Leu-Leu-C, which was different from previously reported lipopeptides. The remaining six had an identical peptide sequence of N-Glu-Leu-Leu-Val-Asp-Leu-Leu-C. The fatty acid parts were found to be mixtures of iso C(12), iso C(13), anteiso C(13), iso C(14), n C(14), iso C(15), anteiso C(15), n C(15), anteiso C(16) and anteiso C(17) beta-hydroxy fatty acids. The structure of each lipopeptide was determined to be the beta-hydroxy fatty acid bonded to the peptide chain.  相似文献   

4.
Type I/II procollagen N-proteinase was partially purified from chick embryos and used to examine the rate of cleavage of a series of purified type I procollagens synthesized by fibroblasts from probands with heritable disorders of connective tissue. The rate of cleavage was normal with procollagen from a proband with osteogenesis imperfecta that was overmodified by posttranslational enzymes. Therefore, posttranslational overmodification of the protein does not in itself alter the rate of cleavage under the conditions of the assay employed. Cleavage of the procollagen, however, was altered in several procollagens with known mutations in primary structure. Two of the procollagens had in-frame deletions of 18 amino acids encoded by exons 11 and 33 of the pro alpha 2(I) gene. In both procollagens, both the pro alpha 1(I) and the pro alpha 2(I) chains were totally resistant to cleavage. With a procollagen in which glycine-907 of the alpha 2(I) chain domain was substituted with aspartate, both pro alpha chains were cleaved but at a markedly decreased rate. The results, therefore, establish that mutations that alter the primary structure of the pro alpha chains of procollagen at sites far removed from the N-proteinase cleavage site can make the protein resistant to cleavage by the enzyme. The long-range effects of in-frame deletions or other changes in amino acid sequence are probably explained by their disruption of the hairpin structure that is formed by each of the three pro alpha chains in the region containing the cleavage site and that is essential for cleavage of the procollagen molecule by N-proteinase.  相似文献   

5.
Lipopeptides and their analogues are of increasing interest due to their amphiphilic structures and potential applications in various fields. Three purified lipopeptides analogues were obtained at the same time after two‐step column‐chromatographic purification from cell‐free broth cultivated by Bacillus licheniformis HSN 221. Analysis by ESI‐MS, GC/MS, HPLC, and Q‐TOF MS/MS revealed their primary structures as anteiso‐C15‐ and iso‐C15β‐hydroxy fatty acid‐Gln‐Leu‐Leu‐Val‐MeAsp‐Leu‐Ile, anteiso‐C15‐ and iso‐C15β‐hydroxy fatty acid‐MeGlu‐Leu‐Leu‐Val‐Asp‐Leu‐Ile and iso‐C16β‐hydroxy fatty acid‐Glu‐Leu‐Leu‐Val‐MeAsp‐Leu‐Ile, respectively. The production of two surfactin monomethyl esters and one lichenysin monomethyl ester directly from microorganisms is helpful to understand the variants of metabolites.  相似文献   

6.
1. Using a monoclonal anti-human C3 antibody and a polyclonal anti-cobra venom factor antibody as probes, a protein homologous to the mammalian third complement component (C3) was purified from axolotl plasma and found to be axolotl C3. 2. Axolotl C3 consists of two polypeptide chains (Mr = 110,000 and 73,000) linked by disulfide bonds. An internal thiolester bond in the alpha chain was identified by the incorporation of [14C]methylamine and NH2-terminal sequence from the C3d fragment of C3. 3. Digestion of C3 by trypsin resulted in the cleavage of both the alpha and beta chains, generating fragments with a cleavage pattern similar to that of human C3. 4. The amino acid composition of axolotl C3 and the amino acid sequences of the thiolester site (and the surrounding amino acids), the cleavage site for the C3-convertase, and one of the factor I cleavage sites are similar to C3 from other vertebrates. 5. In contrast to human C3, which has concanavalin A binding carbohydrates on both the alpha and beta chains, only the beta chain of axolotl C3 contains such carbohydrates.  相似文献   

7.
Kwok Y  Sung WC  Lin AL  Liu HH  Chou FA  Hsieh SS  Leng CH  Chong P 《Proteomics》2011,11(13):2620-2627
The structural analysis of post‐translational modifications (PTMs) of lipoproteins is difficult due to the hydrophobic properties of their fatty acid moieties. At the present time, the relative positions of fatty acid components on the N‐acyl‐S‐diacylglycerylcysteine core structure has not been specifically identified in any natural or bacterial expressed recombinant lipoproteins. In this study, we describe a rapid solid‐phase extraction using acetonitrile and isopropanol method that can be performed manually to isolate large amounts of relatively pure lipopeptides generated by the limited tryptic‐digestion of recombinant lipoproteins. Using these lipopeptides and LC/MS mass spectra analysis, two groups of N‐terminal lipidated (diacyl or triacyl) molecules that differ by one fatty acid unit were successfully identified. This LC/MS method also provided the separation of lipopeptides differing by 14 Da for the on‐line MS identification. Multiple‐stage fragmentation analyses of the di‐ and triacyl lipopeptides using both the positive and negative ion modes enabled to identify the putative structure of the N‐acyl‐S‐diacylglycerylcysteine containing an amide bond to palmitic acid at the N‐terminal cysteine, a palmitic acid at sn1 position, and an unsaturated fatty acid of either hexadecenoic acid, cyclopropaneoctanoic acid, oleic acid and nonadecenoic acid at sn2 position of diacylglycerol residue through ester bonding. For diacyl lipoprotein, the saturated palmitoyl fatty acid group is absent at sn1 position of glycerol‐derived lipid residue of lipopeptide.  相似文献   

8.
Collagenase cleavage of human Type II and III collagens has been studied using a highly purified preparation of rabbit tumor collagenase. Progress of the reactions in solution was followed by viscometry and the results indicated that under the conditions employed Type III collagen molecules were cleaved at approximately five times the rate of Type II molecules. Cleavage products of the reactions were isolated in denatured form by agarose molecular sieve chromatography. The molecular weights and amino acid compositions of the products demonstrated that Type II and III molecules had been cleaved at the characteristic three-quarter, one-quarter locus, giving rise to a large fragment derived from the NH2-terminal portion of the molecule and a smaller fragment representing the COOH-terminal region. The amino acid sequence at the NH2-terminal portion of the smaller fragment derived from Type II collagen was determined to be Ile-Ala-Gly-Gln-Arg, and the corresponding region from Type III collagen was found to have the sequence Leu-Ala Gly-Leu-Arg. These sequences for alpha1(II) and alpha1(III) chains adjacent to the site of collagenase cleavage along with previous data for alpha1(I) and alpha2 chains indicate that the minimum specific sequence required for collagenase cleavage is Gly-Ile-Ala or Gly-Leu-Ala. Inspection of the available sequence data for collagen alpha chains indicates that the latter sequences are found in at least three additional locations at which collagenase cleavage does not occur. Each of the sequences which are apparently not substrates for collagenase, however, are followed by a Gly-X-Hyp sequence. We suggest, then, that a minimum of five residues in collagen alpha chains COOH-terminal to the cleavage site comprise the substrate recognition site.  相似文献   

9.
The dermal type I collagen of a patient with Ehlers-Danlos type VIIB (EDS-VIIB) contained normal alpha 2(I) chains and mutant pN-alpha 2(I)' chains in which the amino-terminal propeptide (N-propeptide) remained attached to the alpha 2(I) chain. Similar alpha 2(I) chains were produced by cultured dermal fibroblasts. Amino acid sequencing of tryptic peptides, prepared from the mutant amino-terminal pN-alpha 2(I) CB1' peptide, indicated that five amino acids, including the N-proteinase (the specific proteinase that cleaves the procollagen N-propeptide) cleavage site, had been deleted from the junction of the N-propeptide and the N-telopeptide (the nonhelical domain at the amino-terminus of the alpha chains of fully processed type I polypeptide chains) of the mutant pro-alpha 2(I)' chain. The corresponding 15 nucleotides, which were deleted from approximately half of the alpha 2(I) cDNA polymerase chain reaction products, of the alpha 2(I) cDNA polymerase chain reaction products, were encoded by the +1 to +15 nucleotides of exon 6 of the normal alpha 2(I) gene (COL1A2). These 15 nucleotides were deleted in the splicing of alpha 2(I) pre-mRNA to mRNA as a result of inactivation of the 3' splice site of intron 5 by an AG to AC mutation and the activation of a cryptic AG splice acceptor site corresponding to positions +14 and +15 of exon 6. Loss of the N-proteinase cleavage site explained the persistence of the pN-alpha 2(I)' chains in the dermis and in fibroblast cultures. Collagen production by cultured dermal fibroblasts was doubled, possibly due to reduced feedback inhibition by the N-propeptides. In contrast to previously reported cases of EDS-VIIB, Lys5 of the N-telopeptide was not deleted and appeared to take part in the formation of intramolecular cross-linkages. However, increased collagen solubility and abnormal extraction profiles of the mutant type I collagen molecules indicated that collagen cross-linking was abnormal in the dermis. The proband and her son were heterozygous for the mutation. It is likely that the heterozygous loss of the N-proteinase cleavage site, with persistence of a shortened N-propeptide, was the major factor responsible for the EDS-VIIB phenotype.  相似文献   

10.
Bovine articular type II collagen was prepared by limited pepsin digestion, differential salt fractionation and carboxymethylcellulose chromatography. Cyanogen bromide digestion of purified type II collagen alpha chains yielded twelve distinct peptides designated CB1-12. The peptide alpha 1(II)-CB11 was isolated by carboxymethylcellulose chromatography and Sephadex G-75S gel filtration. Automated Edman degradation together with chymotrypsin, thermolysin and trypsin digestion enabled identification of its complete amino acid sequence. Compared with type I and type III collagen, the data show similarity with alpha 1(I)-CB8 and alpha 1(III)-CB6-1-8-10-2 peptides, respectively. The peptide is located within residues 124-402 of the alpha 1(II) collagen chain and with its identification, now extends the known amino acid sequence of bovine type II cartilage collagen to 660 amino acid residues including alpha 1(II)-CB1-2-6-12-11-8-10 (partial). This corresponds to alpha 1(I)-CB0-1-2-4-5-8-3-7 (partial; 1-660) and alpha 1(III)-CB3A-3B-3C-7-6-1-8-10-2-4-5 (partial; 1-660) of bovine alpha 1(I) and alpha 1(III) collagen chains.  相似文献   

11.
Mass spectral studies have been conducted with isotopically stable labelled and fluorinated picolinyl esters and 4,4-dimethyloxazoline (DMOX) derivatives of fatty acids in order to establish mechanisms of ion formation. Reciprocal hydrogen transfer is shown to be involved in the formation of the ion at m/z 126 with dimethyloxazoline derivatives and for the ion at m/z 164 with picolinyl esters. Inclusion of a fluorine atom alpha to the carboxyl of a fatty acid has been demonstrated to enhance rearrangements for expulsion of internal chain fragments with both methyl ester and dimethyloxazoline derivatives. When two fluorine atoms are inserted into the alpha position a similar rearrangement has been shown to occur with picolinyl esters, although not nearly to the same extent as that observed with either of the other derivatives. Mechanisms for such rearrangements are proposed and discussed. With fatty acid dimethyloxazoline derivatives the M-15 ion arises solely from the loss of a methyl radical from the ring and the M-43 ion has at least three different mechanisms of formation. Such rearrangements make it difficult to establish the identity of the terminal moiety of the alkyl chain. In mass spectrometry terms the picolinyl ester would seem to be the superior derivative for structural characterisation of fatty acids.  相似文献   

12.
A new lipopeptide with C12 fatty acid has been isolated from the cell broth of Bacillus subtilis HSO121 by chromatographic methods, which is believed to be the homologue of lipopeptides. The fatty acid portion was methylated and analyzed by GC/MS, ESI Q-TOF MS and 1H-NMR. The peptide portion, of which the amino acid composition was obtained by HPLC combined with a phenyl isothiocyanate (PITC) derivatization methods, was analyzed by ESI Q-TOF MS. Comparing the obtained results with surfactin C13 showed that the new lipopeptide has a peptide moiety similar to that of surfactin and the difference exists in the fatty acid portion, which is an iso-C12 beta-hydroxy fatty acid. The critical micelle concentration (CMC) of this new homologue is estimated to be 6.27 x 10(-5) mol/l in 10 mmol/l phosphate buffer solution (PBS, pH 8.0) at 30 degrees C, and the surface tension at CMC (gamma CMC) achieved is as little as 27.71 mN/m. The hemolytic activities of the C12-lipopeptide on 2% human erythrocytes showed a HC50 of 26.5 micromol/l.  相似文献   

13.
We have studied the time sequence degradation of native insulin by insulin protease from human fibroblast using multiple steps involving purification of the products by high performance liquid chromatography, determination of peak composition by amino acid sequence analysis, and confirmation of structure by mass spectrometry and thus elucidated the sites of cleavage of insulin by human insulin protease. We observed that as early as 0.5 min of incubation, three major new peptide peaks, intact insulin, and four smaller peptide peaks can be detected. The major peptides are portions of the insulin molecule, with the amino ends of the A and B chains or the carboxyl ends of the A and B chains still connected by disulfide bonds. Peptide peak I is A1-13-B1-9. Peptide peak II is A1-14-B1-9. Peptide peak III is A14-21-B14-30. The smaller peptide peaks are A14-21-B17-30, A15-21-B14-30, A15-21-B10-30, and A14-21-B10-30. The major peptide bond cleavage sites therefore consist of A13-14, A14-15, B9-10, B13-14, and B10-17. With longer incubation times, peptide peak II appears to lose the A14 tyrosine to form peptide peak I. This peptide I, which is the amino end of the A and B chains, is not further degraded even after 1.5 h of incubation. With longer incubation times, the peptides containing the carboxyl ends of the A and B chains are further degraded to form products from cleavage at the A18-19, B14-15, B25-26, and a small amount of A19-20, B10-11, and B24-25 cleavage and the emergence of 2-5-amino acid peptide chains, tyrosine, alanine, histidine, and leucine-tyrosine. We conclude, based on the three-dimensional structure of insulin, that human insulin protease recognizes the alpha-helical regions around leucine-tyrosine bonds and that final degradation steps to small peptides do not require lysosomal involvement.  相似文献   

14.
A proband with lethal osteogenesis imperfecta has been investigated for the causative defect at the levels of collagen protein, mRNA, and DNA. Analysis of type I collagen synthesized by the proband's fibroblasts showed excessive post-translational modification of alpha 1(I) chains along the entire length of the helix. Oververmodification of alpha chains could be prevented by incubation of the cells at 30 rather than 37 degrees C, and the thermal stability of the triple helix, as determined by protease digestion, was normal. RNase A cleavage of RNA:RNA hybrids formed between the proband's mRNA and antisense RNA derived from normal pro-alpha 1(I) chain cDNA clones was used to locate an abnormality to exon 43 of the proband's pro-alpha 1(I) collagen gene (COL1A1). The nucleotide sequence of the corresponding gene region showed, in one allele, the deletion of 9 base pairs, not present in either parent, within a repeating sequence of exon 43. The mutation causes the loss of one of three consecutive Gly-Ala-Pro triplets at positions 868-876, but does not otherwise disrupt the Gly-X-Y sequence. Procollagen processing in fibroblast cultures and susceptibility of the mutant collagen I to cleavage with vertebrate collagenase were normal, indicating that the slippage of collagen chains by one Gly-X-Y triplet does not abolish amino-propeptidase and collagenase cleavage sites. How the mutation produces the lethal osteogenesis imperfecta phenotype is not entirely clear; the data suggest that the interaction of alpha chains immediately prior to helix formation may be affected.  相似文献   

15.
Cationic amino acid-based surfactants were synthesized via solid phase peptide synthesis and terminal acylation of their α and ε positions with saturated fatty acids. Five new lipopeptides, N-α-acyl-N-ε-acyl lysine analogues, were obtained. Minimum inhibitory concentration and minimum bactericidal (fungicidal) concentration were determined on reference strains of bacteria and fungi to evaluate the antimicrobial activity of the lipopeptides. Toxicity to eukaryotic cells was examined via determination of the haemolytic activities. The surface-active properties of these compounds were evaluated by measuring the surface tension and formation of micelles as a function of concentration in aqueous solution. The cationic surfactants demonstrated diverse antibacterial activities dependent on the length of the fatty acid chain. Gram-negative bacteria and fungi showed a higher resistance than Gram-positive bacterial strains. It was found that the haemolytic activities were also chain length-dependent values. The surface-active properties showed a linear correlation between the alkyl chain length and the critical micelle concentration.  相似文献   

16.
We have previously shown that platelets adhere to collagen substrates via a Mg2(+)-dependent mechanism mediated by the surface glycoprotein Ia-IIa (human leukocyte very late activation protein 2, alpha 2 beta 1 integrin) complex. The adhesion is specific for collagen and is supported by collagen types I, II, III, IV, and VI. Several other members of the integrin family of adhesive protein receptors recognize discrete linear amino acid sequences within their adhesive glycoprotein ligands. Experiments with both intact platelets and with liposomes containing the purified receptor complex indicated that the alpha 2 beta 1 receptor recognized denatured type I collagen in a Mg2(+)-dependent manner. To further localize the binding site, the alpha 1 and alpha 2 chains of type I collagen were purified by gel filtration and ion exchange chromatography and tested as adhesive substrates. Both the alpha 1(I) and alpha 2(I) chains effectively supported Mg2(+)-dependent platelet adhesion. The purified alpha 1(I) collagen chain was then subjected to cleavage with cyanogen bromide, and the resultant peptides were separated by chromatography on carboxymethylcellulose. Only the alpha 1(I)-CB3 fragment supported Mg2(+)-dependent platelet adhesion. The monoclonal antibody P1H5 which recognizes an epitope on the alpha 2 subunit of the integrin receptor and which inhibits the adhesion of both intact platelets and liposomes bearing the purified receptor to collagen also inhibited platelet adhesion to the alpha 1(I)-CB3 fragment. These results indicate that the alpha 2 beta 1 receptor recognizes a sequence of amino acids present in the alpha 1(I)-CB3 fragment of type I collagen. An identical or similar sequence likely mediates binding of the receptor to other collagen polypeptides.  相似文献   

17.
A putative operon encoding the biosynthetic pathway for the cytotoxic cyanobacterial lipopeptides puwainphycins was identified in Cylindrospermum alatosporum. Bioinformatics analysis enabled sequential prediction of puwainaphycin biosynthesis; this process is initiated by the activation of a fatty acid residue via fatty acyl-AMP ligase and continued by a multidomain non-ribosomal peptide synthetase/polyketide synthetase. High-resolution mass spectrometry and nuclear magnetic resonance spectroscopy measurements proved the production of puwainaphycin F/G congeners differing in FA chain length formed by either 3-amino-2-hydroxy-4-methyl dodecanoic acid (4-methyl-Ahdoa) or 3-amino-2-hydroxy-4-methyl tetradecanoic acid (4-methyl-Ahtea). Because only one puwainaphycin operon was recovered in the genome, we suggest that the fatty acyl-AMP ligase and one of the amino acid adenylation domains (Asn/Gln) show extended substrate specificity. Our results provide the first insight into the biosynthesis of frequently occurring β-amino fatty acid lipopeptides in cyanobacteria, which may facilitate analytical assessment and development of monitoring tools for cytotoxic cyanobacterial lipopeptides.  相似文献   

18.
We report here the complete nucleotide and amino acid sequences for the alpha 1-chain of mouse collagen IV which is 1669 amino acids in length, including a putative 27-residue signal peptide. In comparison with the amino acid sequence for the alpha 2-chain (Saus, J., Quinones, S., MacKrell, A. J., Blumberg, B., Muthkumaran, G., Pihlajaniemi, J., and Kurkinen, M. (1989) J. Biol. Chem. 264, 6318-6324), the two chains of collagen IV are 43% identical. Most of the interruptions of the Gly-X-Y repeat are homologously placed but strikingly show no sequence similarity between the two chains. Availability of the amino acid sequences for human collagen IV allows a detailed comparison of the primary structure of collagen IV and reveals evolutionarily conserved domains of the protein. Between the two species, the alpha 1 (IV) chains are 90.6% and the alpha 2 (IV) chains are 83.5% identical in sequence. We discuss these data with respect to differential evolution between and within the collagen IV chain types.  相似文献   

19.
H Sage  P Bornstein 《Biochemistry》1979,18(17):3815-3822
A novel collagen chain, termed alpha C, has been isolated from human placenta by limited pepsin digestion. The collagen containing the alpha C chain copurifies with placental AB collagen during selective salt precipitation but is virtually absent from fetal birth membranes, which contain relatively larger amounts of AB. Both native AB and alpha C-containing collagens are resistant to human skin collagenase under conditions that support cleavage of type I by greater than 90%. The alpha C chain was separated from alpha B by phosphocellulose chromatography and subsequently from alpha P by chromatography on CM-cellulose. Its amino acid composition is distinct from alpha A and alha B although all three chains posses compositional features in common; the carbohydrate content of the alpha C chain was intermediate between those of alpha A and alpha B. Analysis by NaDodSO4-polyacrylamide gel electrophoresis of peptides produced by CNBr cleavage and by limited digestion with the enzyme mast cell protease indicated different and unique products for the alpha A, alpha B, and alpha C chains. The data support the existence of another collagen chain which is related to the alpha A and alpha B chains but which is structurally unique. The proteins containing these chains may in turn comprise a subfamily of collagen isotypes which represents a divergence from and/or specialization of the type IV basement membrane collagens.  相似文献   

20.
Glycosylphosphatidylinositol (GPI) anchor is a major lipidation in posttranslational modification. GPI anchor precursors are biosynthesized from endogenous phosphatidylinositols (PIs) and attached to proteins in the endoplasmic reticulum. Endogenous PIs are characterized by domination of diacyl species and the presence of polyunsaturated fatty acyl chain, such as 18:0-20:4, at the sn-2 position. In contrast, the features of mammalian glycosylphosphatidylinositol-anchored proteins (GPI-APs) are domination of alkyl/acyl PI species and the presence of saturated fatty acyl chains at the sn-2 position, the latter being consistent with association with lipid rafts. Recent studies showed that saturated fatty acyl chain at sn-2 is introduced by fatty acid remodeling that occurs in GPI-APs. To gain insight into the former feature, we analyzed the molecular species of several different GPI precursors derived from various mammalian mutant cell lines. Here, we show that the PI species profile greatly changed in the precursor glucosamine (GlcN)-acyl-PI and became very similar to that of GPI-APs before fatty acid remodeling. They had alkyl (or alkenyl)/acyl types with unsaturated acyl chain as the major PI species. Therefore, a specific feature of the PI moieties of mature GPI-APs, domination of alkyl (or alkenyl)/acyl type species over diacyl types, is established at the stage of GlcN-acyl-PI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号