首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Plant diversity is critical to the functioning of ecosystems, potentially mediated in part by interactions with soil biota. Here, we characterised multiple groups of soil biota across a plant diversity gradient in a long‐term experiment. We then subjected soil samples taken along this gradient to drought, freezing and a mechanical disturbance to test how plant diversity affects the responses of soil biota and growth of a focal plant to these disturbances. High plant diversity resulted in soils that were dominated by fungi and associated soil biota, including increased arbuscular mycorrhizal fungi and reduced plant‐feeding nematodes. Disturbance effects on the soil biota were reduced when plant diversity was high, resulting in higher growth of the focal plant in all but the frozen soils. These results highlight the importance of plant diversity for soil communities and their resistance to disturbance, with potential feedback effects on plant productivity.  相似文献   

2.
3.
Aims Changes in soil microbial communities after occupation by invasive alien plants can represent legacy effects of invasion that may limit recolonization and establishment of native plant species in soils previously occupied by the invader. In this study, for three sites in southern Germany, we investigated whether invasion by giant goldenrod (Solidago gigantea) leads to changes in soil biota that result in reduced growth of native plants compared with neighbouring uninvaded soils.Methods We grew four native plant species as a community and treated those plants with soil solutions from invaded or uninvaded soils that were sterilized, or live, with live solutions containing different fractions of the soil biota using a decreasing sieve mesh-size approach. We measured aboveground biomass of the plants in the communities after a 10-week growth period.Main Findings Across all three sites and regardless of invasion, communities treated with <20 μm soil biota or sterilized soil solutions had significantly greater biomass than communities treated with the complete soil biota solution. This indicates that soil biota>20 μm are more pathogenic to the native plants than smaller organisms in these soils. Across all three sites, there was only a non-significant tendency for the native community biomass to differ among soil solution types, depending on whether or not the soil was invaded. Only one site showed significant differences in community biomass among soil solution types, depending on whether or not the soil was invaded; community biomass was significantly lower when treated with the complete soil biota solution than with soil biota <20 μm or sterilized soil solutions, but only for the invaded soil. Our findings suggest that efforts to restore native communities on soils previously invaded by Solidago gigantea are unlikely to be hindered by changes in soil microbial community composition as a result of previous invasion.  相似文献   

4.
弱化的植物-土壤生物共生关系降低了一年生入侵植物与本地物种的竞争能力 植物与土壤生物,特别是与丛枝菌根真菌(AMF)的关系,可能对外来植物在新环境中的建立和扩张发挥着至关重要的作用。但是,植物对AMF的依赖是否会在入侵后发生变化,及其如何影响与本 地物种的竞争仍然知之甚少。通过同质园实验,我们研究了入侵物种北美车前(Plantago virginica)的原产地(美国)和入侵地(中国)种群对AMF的响应,以及在有无竞争者的情况下这些响应是否发生变化。研究结果显示,原产地种群始终具有较高的AMF侵染率,并且其生物量和种子产量都受益于AMF。不同的是, 入侵地种群从AMF中获得的收益较少,甚至在存在竞争者的情况下,AMF的侵染使得入侵种群的生物量有所降低。入侵种群的这种低菌根依赖度可能与受到本地竞争者的更大抑制作用有关。北美车前入侵地和原产地种群对AMF的不同响应表明,其对菌根真菌的依赖性在入侵中国的过程中发生了改变。我们的发现表明,这种减少的依赖性会使入侵植物在种间竞争中付出一定的代价。  相似文献   

5.
Soil disturbances can alter microbial communities including arbuscular mycorrhizal (AM) fungi, which may in turn, affect plant community structure and the abundance of exotic species. We hypothesized that altered soil microbial populations owing to disturbance would contribute to invasion by cheatgrass (Bromus tectorum), an exotic annual grass, at the expense of the native perennial grass, squirreltail (Elymus elymoides). Using a greenhouse experiment, we compared the responses of conspecific and heterospecific pairs of cheatgrass and squirreltail inoculated with soil (including live AM spores and other organisms) collected from fuel treatments with high, intermediate and no disturbance (pile burns, mastication, and intact woodlands) and a sterile control. Cheatgrass growth was unaffected by type of soil inoculum, whereas squirreltail growth, reproduction and nutrient uptake were higher in plants inoculated with soil from mastication and undisturbed treatments compared to pile burns and sterile controls. Squirreltail shoot biomass was positively correlated with AM colonization when inoculated with mastication and undisturbed soils, but not when inoculated with pile burn soils. In contrast, cheatgrass shoot biomass was negatively correlated with AM colonization, but this effect was less pronounced with pile burn inoculum. Cheatgrass had higher foliar N and P when grown with squirreltail compared to a conspecific, while squirreltail had lower foliar P, AM colonization and flower production when grown with cheatgrass. These results indicate that changes in AM communities resulting from high disturbance may favor exotic plant species that do not depend on mycorrhizal fungi, over native species that depend on particular taxa of AM fungi for growth and reproduction.  相似文献   

6.
1. The nitrogen limitation hypothesis posits that phytophagous insects benefit from nitrogen enrichment of their host plants through a reduction of the concentration of toxic compounds and an increase of free amino acids and proteins. However, species' response to nitrogen enrichment varies substantially and high nitrogen levels are associated with population decline, suggesting there are major costs to feeding on nitrogen‐rich host plants. 2. To test the hypothesis that larval growth performance is maximal at intermediate nitrogen enrichment, nitrogen levels were measured in 18 populations of the host plant of Lycaena helle, a specialist butterfly inhabiting nutrient‐poor wet meadows. The nitrogen content of host plants was then modified to mirror average natural nitrogen levels (C), highest field‐recorded levels (T1), and levels higher than those observed across our study populations (T2). 3. Caterpillars fed with T1 leaves had a greater maximum body mass than caterpillars of the C group because of their improved food assimilation during the early stages of their development. Caterpillars of C and T2 groups had similar growth patterns but high nitrogen content had detrimental effects, as caterpillars fed with T2 leaves had a slower ingestion rate than C and T1 groups. 4. Quantifying the fitness consequences of these changes in growth performance is necessary to fully understand the implications of nitrogen enrichment for L. helle (rapid growth may result in fitness costs). However, conservation plans for this emblematic glacial relict species should also consider the preservation of its host plant quality to ensure its persistence.  相似文献   

7.
Soil biota, in particular fungi and other microbes, are known to interactively influence plant community structure. However, soil biota effects that can be isolated in a greenhouse experiment may be overridden by other biotic and abiotic factors in the field. Here we conducted parallel greenhouse and field experiments and quantified how soil biota sampled at the habitat level affect the performance of potential host plants within and across neighboring habitat types (pastures, coffee plantations and forest fragments) in a montane region in Colombia. We hypothesized that the direction and strength of soil‐biota effects depend on the habitat where soil is sampled, focal plant's life history, and field environmental characteristics (soil nutrients, light). In a greenhouse experiment, we compared growth of 10 plant species with soil from home (where species typically occur) and foreign (where conspecific adults rarely occur) habitats, with or without soil sterilization. In the field, we conducted a reciprocal transplant experiment in which we suppressed soil fungi with the application of fungicide. In the greenhouse experiment, fast‐growing pasture grass and pioneer trees performed less well with live soil from their home, compared to foreign habitats, and such home disadvantage was reduced following soil sterilization. Home disadvantage associated with live soil biota was also detectable in the field experiment, although light conditions of grasslands and coffee plantations benefited growth of these fast‐growing species. In contrast, coffee and shade‐tolerant trees performed similarly or better with their home soils, and showed no response to soil biota suppression. Overall, the species‐and‐habitat specific soil biota effects detectable in the field experiment were similar in direction and relative strength to those from the greenhouse experiments. Our findings highlight the importance of habitat‐level plant–soil interactions and plant life history for the regeneration of natural forests and agricultural production in human‐modified landscapes.  相似文献   

8.
Herbivore impact on moss depth, soil temperature and arctic plant growth   总被引:4,自引:0,他引:4  
We provide evidence for a mechanism by which herbivores may influence plant abundance in arctic ecosystems. These systems are commonly dominated by mosses, the thickness of which influences the amount of heat reaching the soil surface. Herbivores can reduce the thickness of the moss layer by means of trampling and consumption. Exclusion of grazing by barnacle geese and reindeer over a period of 7?years at Ny-Ålesund, Spitsbergen, caused an increase in the thickness of the moss layer, and a reduction in soil temperature of 0.9?°C. Soil temperature was negatively correlated with moss-layer thickness across sites, with highest soil temperatures where moss layers were shallow. We found that moss growth did not respond to experimental manipulation of soil temperature, but the grass Poa arctica (arctic meadow-grass) and the dicot Cardamine nymanii (polar cress) suffered a 50% reduction in biomass when growing in chilled soils.  相似文献   

9.
Invasive plants often interact with antagonists that include native parasitic plants and pathogenic soil microbes, which may reduce fitness of the invaders. However, to date, most of the studies on the ecological consequences of antagonistic interactions between invasive plants and the resident biota focused only on pairwise interactions. A full understanding of invasion dynamics requires studies that test the effects of multiple antagonists on fitness of invasive plants and co‐occurring native plants. Here, we used an invasive plant Mikania micrantha, a co‐occurring native plant Coix lacryma‐jobi, and a native holoparasitic plant Cuscuta campestris to test whether parasitism on M. micrantha interacts with soil fungi and bacteria to reduce fitness of the invader and promote growth of the co‐occurring native plant. In a factorial setup, M. micrantha and C. lacryma‐jobi were grown together in pots in the presence versus absence of parasitism on M. micrantha by C. campestris and in the presence versus absence of full complements of soil bacteria and fungi. Fungicide and bactericide were used to suppress soil fungi and bacteria, respectively. Findings show that heavy parasitism by C. campestris caused the greatest reduction in M. micrantha biomass when soil fungi and bacteria were suppressed. In contrast, the co‐occurring native plant C. lacryma‐jobi experienced the greatest increase in biomass when grown with heavily parasitized M. micrantha and in the presence of a full complement of soil fungi and bacteria. Taken together, our results suggest that selective parasitism on susceptible invasive plants by native parasitic plants and soil microorganisms may diminish competitive ability of invasive plants and facilitate native plant coexistence with invasive plants.  相似文献   

10.
We examined growth of Eucalyptus microcarpa seedlings in soil collected from four sites in southeastern Australia, in which retired pasture land has been revegetated with mixed plantings of Eucalyptus and Acacia species. Revegetation of farm land in southeastern Australia is an area of major investment. The focus of the study was to examine the influence of soil biota on seedling growth and its possible interaction with soil enrichment from a legume (Acacia) and decomposition rates. We used a soil freezing treatment (−80°C for 3 days) to retard the soil biota, with the expectation that invertebrates in particular would be killed. Soil freezing did not cause a nutrient pulse, but did reduce the level of ammonium in soil. Nitrate levels increased with time in pots, regardless of the soil treatment. Decomposition rates measured using cellulose substrate were significantly reduced by the freeze treatment, but only for approximately 90 days. Eucalyptus microcarpa seedlings grown in freeze-treated soil were approximately 40% smaller (total biomass), had marginally lower LAR (leaf area ratio), and significantly lower LMA (leaf mass per area). Low LMA indicates that leaves are either thinner in cross-section or less dense. We hypothesise that both the poor growth of seedlings and production of less robust leaves are consequences of reduced availability of soil nutrients due to the diminished soil biota after freeze treatment. Litter under Acacia was richer in nitrogen than litter under Eucalyptus but there was no difference in nitrogen content of soil, and consequently no soil source effects on plant growth or decomposition. We suggest that variation in the soil biota has the potential to greatly enhance or hinder the success of revegetation on retired agricultural land, but enrichment of soil by decomposition of nitrogen rich litter in these sites requires longer than the 8–15 years since they were revegetated.  相似文献   

11.
Cyanobacteria are photosynthetic bacteria that form a fundamental part of soil biocrusts, enhance soil function and structure, and can promote plant growth. We assessed the potential of cyanobacteria as a seed bio‐primer for mine‐site restoration in an arid region in Western Australia, examining its effects on native plant growth and the characteristics of mine soil substrates used in dryland restoration. Cyanobacteria strains indigenous to the study region (Leptolyngbya sp., Microcoleus sp., Nostoc sp., and Scytonema sp.) were used to create an inoculant. Seeds of seven native plant species were bio‐primed with the inoculant, and their germination and growth assessed in a laboratory experiment. Seedling growth after bio‐priming was assessed in a glasshouse experiment for a subset of three species, in two different substrates (topsoil and mine waste). Soil properties related to soil function, e.g. total organic carbon, total nitrogen, and microbial activity, were also measured. Minor effects on germination were recorded with only significantly higher germination rates reported in E. gamophylla. Soil parameters were generally higher in topsoil than in mine waste, regardless of bio‐priming treatment. However, bio‐priming resulted in seedlings of four species producing longer radicles and/or shoots. For example, seedling root lengths of bio‐primed G. wickhamii were 57% larger than the control treatment (30.1 ± 4.3 and 13.0 ± 1.6 mm, respectively); and shoots of T. wiseana were 54% longer in the bio‐primed treatment (18.6 ± 1.6 mm) compared to the control (8.53 ± 1.4 mm). Overall, our results highlight that bio‐priming with cyanobacteria may improve plant growth for some species commonly used in dryland restoration.  相似文献   

12.
The novel associations between invasive plants and their natural enemies in the introduced range have recently received increasing attention; however, the effects of novel enemies on exotic plant performance and competition with native species remain poorly explored. Here, we tested the impact of herbivory by a native beetle, Cassida piperata, on the performance of the exotic species Alternanthera philoxeroides and competition with a native congener, Alternanthera sessilis, using common garden experiments in central China. We found A. philoxeroides was able to fully compensate for intense herbivory by C. piperata. Herbivory by C. piperata that released at the average density in this region had no impact on competition between the native and exotic plant species. Our results indicate that herbivory by novel enemies may not reduce exotic plant performance due to plant compensation. However, high tolerance to herbivory may not confer a competitive advantage for exotic species compared to less tolerant native competitors if the herbivore damage is below a certain threshold. Thus, it is necessary to assess the impact of novel enemies on exotic plant performance and competition with native plants along gradients of insect densities. This may lead to a better understanding of how best to exploit the role of native herbivores in facilitating or slowing plant invasions.  相似文献   

13.
14.

Background

One of the most significant consequences of contemporary global change is the rapid decline of biodiversity in many ecosystems. Knowledge of the consequences of biodiversity loss in terrestrial ecosystems is largely restricted to single ecosystem functions. Impacts of key plant functional groups on soil biota are considered to be more important than those of plant diversity; however, current knowledge mainly relies on short-term experiments.

Methodology/Principal Findings

We studied changes in the impacts of plant diversity and presence of key functional groups on soil biota by investigating the performance of soil microorganisms and soil fauna two, four and six years after the establishment of model grasslands. The results indicate that temporal changes of plant community effects depend on the trophic affiliation of soil animals: plant diversity effects on decomposers only occurred after six years, changed little in herbivores, but occurred in predators after two years. The results suggest that plant diversity, in terms of species and functional group richness, is the most important plant community property affecting soil biota, exceeding the relevance of plant above- and belowground productivity and the presence of key plant functional groups, i.e. grasses and legumes, with the relevance of the latter decreasing in time.

Conclusions/Significance

Plant diversity effects on biota are not only due to the presence of key plant functional groups or plant productivity highlighting the importance of diverse and high-quality plant derived resources, and supporting the validity of the singular hypothesis for soil biota. Our results demonstrate that in the long term plant diversity essentially drives the performance of soil biota questioning the paradigm that belowground communities are not affected by plant diversity and reinforcing the importance of biodiversity for ecosystem functioning.  相似文献   

15.
Livestock dung provides an important direct pathway by which carbon and nutrients enter soils in pasture ecosystems and affects carbon and nitrogen cycling indirectly through changes in soil and plant properties. Here, we quantify dung deposition, decomposition, and the effects of dung on soil and plants in a Zoysia japonica grassland in Japan. We determined (1) the distribution of dung, (2) the mass loss rate of dung and the amount of carbon respired as CO2, and (3) changes in soil properties and aboveground biomass of Z. japonica. Dung deposition was 4.0–9.7 g C and 0.4–1.0 g N m?2 year?1 and distributed patchily (Morishita’s I δ  > 1). Most (71 %) of the carbon in dung deposited in June was lost within a single grazing period by aerobic decomposition, more than mass loss rate of Z. japonica litter in the first year (about 50 %), suggesting that grazing and defecation can accelerate carbon cycling compared with the typical litterfall–decomposition regime. Nitrogen in dung mass entered the soil as ammonium nitrogen and was nitrified. The spatiotemporal distribution of these processes corresponded to that of stimulated Z. japonica growth. These results suggested that dung deposition significantly affected the inorganic nitrogen status of soil and, therefore, the growth of Z. japonica. However, these effects were very restricted temporally (July–August) and spatially (within 10 cm from dung edge). Thus, such spatiotemporally restricted effects combined with the patchy distribution of dung may contribute to the heterogeneous structure of pasture ecosystems.  相似文献   

16.
Biological Invasions - Invasions in urban settings have been understudied in terms of how invasions are impacted by uniquely urban stressors, such as streetlights. Plant physiology and phenology...  相似文献   

17.
Soil biota activity in arid lands is often limited by the availability of water and organic matter. We experimentally explored whether small changes in soil moisture affect the activity of soil biota in external refuse dumps of the leaf‐cutting ant Acromyrmex lobicornis, one of the most important sources of organic matter in a semi‐arid land of north‐western Patagonia. We estimated CO2 consumption in refuse dumps and in adjacent, non‐nest soil samples at two moisture levels, after 48 and 72 h. Soil biota activity, estimated by respiration rates, was up to 160 times greater in refuse dumps than in adjacent, non‐nest soils. Activity of soil biota in non‐nest soil did not change through time and was not affected by moisture. Conversely, soil biota increased their activity in refuse dump samples only at high moisture condition after 72 h. As the activity of microorganisms is key for soil nutrient generation and availability, refuse dumps may be considered as ‘islands of fertility’ for plants. This effect may be especially important after sporadic spring rainfalls, when the beneficial effect of refuse dumps on soil biota is enhanced. In addition, as refuse dumps generate several times more CO2 than non‐nest soils, nest areas may be considered also as hot spots of CO2 emissions. These results illustrate the potential importance of ant nests for nutrient cycling, maintenance of plant cover and carbon balance in arid ecosystems.  相似文献   

18.
Assessing the impact of transgenic plant products on soil organisms   总被引:21,自引:0,他引:21  
Little is known about the impact of transgenic plant products on soil organisms. However, previous research with synthetic organics, allelochemicals, and extracellular enzymes can be used to guide future research in this area. Projects designed to quantify the impact of transgenic plants on soil organisms must clearly establish that the gene products are responsible for any observed changes. This can only be achieved by determining the fate of transgenic plant gene products during the period of the soil bioassay. The overall impact of transgenic plants will be dictated by not only the primary gene product, but secondary products resulting from abiotic and biotic soil reactions. Primary and secondary products may exhibit both acute and chronic impacts. Such impacts are best quantified using a soil microcosm in which fungal populations and micro- and mesofauna are monitored.  相似文献   

19.
Dietzsch AC  Stanley DA  Stout JC 《Oecologia》2011,167(2):469-479
One major characteristic of invasive alien species is their occurrence at high abundances in their new habitat. Flowering invasive plant species that are visited by native insects and overlap with native plant species in their pollinators may facilitate or disrupt native flower visitation and fertilisation by forming large, dense populations with high numbers of flowers and copious rewards. We investigated the direction of such a proposed effect for the alien invasive Rhododendron ponticum in Irish habitats. Flower visitation, conspecific and alien pollen deposition, fruit and seed set were measured in a self-compatible native focal plant, Digitalis purpurea, and compared between field sites that contained different relative abundances of R. ponticum. Flower visitation was significantly lower at higher alien relative plant abundances than at lower abundances or in the absence of the alien. Native flowers experienced a significant decrease in conspecific pollen deposition with increasing alien abundance. Heterospecific pollen transfer was very low in all field sites but increased significantly with increasing relative R. ponticum abundance. However, lower flower visitation and lower conspecific pollen transfer did not alter reproductive success of D. purpurea. Our study shows that indirect interactions between alien and native plants for pollination can be modified by population characteristics (such as relative abundance) in a similar way as interactions among native plant species. In D. purpurea, only certain aspects of pollination and reproduction were affected by high alien abundances which is probably a result of high resilience due to a self-compatible breeding system. Native species that are more susceptible to pollen limitation are more likely to experience fitness disadvantages in habitats with high relative alien plant abundances.  相似文献   

20.
Soil Cd addition was found to adversely affect germination ofAndropogon scoparius, Monarda fistulosa, andRudbeckia hirta. Rudbeckia germination was found to be most sensitive to soil Cd addition andAndropogon germination most tolerant (b=–.0001). Soil cadmium concentrations sufficient to reduce germination by 25% were calculated to be 30 and 46 g Cd/g soil forRudbeckia andAndropogon respectively.Contribution from Purdue University Agricultural Experiment Station, West Lafayette, Indiana 47907. AES Journal No. 7594. This work was supported by federal funds from the National Science Foundation — RANN Program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号