首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Key message

The use of a breeding strategy combining the evaluation of line per se with testcross performance maximizes annual selection gain for hybrid wheat breeding.

Abstract

Recent experimental studies confirmed a high commercial potential for hybrid wheat requiring the design of optimum breeding strategies. Our objectives were to (1) determine the optimum allocation of the type and number of testers, the number of test locations and the number of doubled haploid lines for different breeding strategies, (2) identify the best breeding strategy and (3) elaborate key parameters for an efficient hybrid wheat breeding program. We performed model calculations using the selection gain for grain yield as target variable to optimize the number of lines, testers and test locations in four different breeding strategies. A breeding strategy (BS2) combining the evaluation of line per se performance and general combining ability (GCA) had a far larger annual selection gain across all considered scenarios than a breeding strategy (BS1) focusing only on GCA. In the combined strategy, the production of testcross seed conducted in parallel with the first yield trial for line per se performance (BS2rapid) resulted in a further increase of the annual selection gain. For the current situation in hybrid wheat, this relative superiority of the strategy BS2rapid amounted to 67 % in annual selection gain compared to BS1. Varying a large number of parameters, we identified the high costs for hybrid seed production and the low variance of GCA in hybrid wheat breeding as key parameters limiting selection gain in BS2rapid.  相似文献   

2.
Simultaneous improvement in grain yield and related traits in maize hybrids and their parents (inbred lines) requires a better knowledge of genotypic correlations between family per se performance (FP) and testcross performance (TP). Thus, to understand the genetic basis of yield-related traits in both inbred lines and their testcrosses, two F 2:3 populations (including 230 and 235 families, respectively) were evaluated for both FP and TP of eight yield-related traits in three diverse environments. Genotypic correlations between FP and TP, $ \hat{r}_{\text{g}} $ (FP, TP), were low (0–0.16) for grain yield per plant (GYPP) and kernel number per plant (KNPP) in the two populations, but relatively higher (0.32–0.69) for the other six traits with additive effects as the primary gene action. Similar results were demonstrated by the genotypic correlations between observed and predicted TP values based on quantitative trait loci positions and effects for FP, $ \hat{r}_{\text{g}} $ (M FP, Y TP). A total of 88 and 35 QTL were detected with FP and TP, respectively, across all eight traits in the two populations. However, the genotypic variances explained by the QTL detected in the cross-validation analysis were much lower than those in the whole data set for all traits. Several common QTL between FP and TP that accounted for large phenotypic variances were clustered in four genomic regions (bin 1.10, 4.05–4.06, 9.02, and 10.04), which are promising candidate loci for further map-based cloning and improvement in grain yield in maize. Compared with publicly available QTL data, these QTL were also detected in a wide range of genetic backgrounds and environments in maize. These results imply that effective selection based on FP to improve TP could be achieved for traits with prevailing additive effects.  相似文献   

3.

Key message

Genetic diversity in elite rye germplasm as well as F 2:3 testcross design enables fast QTL mapping to approach genes controlling grain yield, grain weight, tiller number and heading date in rye hybrids.

Abstract

Winter rye (Secale cereale L.) is a multipurpose cereal crop closely related to wheat, which offers the opportunity for a sustainable production of food and feed and which continues to emerge as a renewable energy source for the production of bioethanol and biomethane. Rye contributes to increase agricultural crop species diversity particularly in Central and Eastern Europe. In contrast to other small grain cereals, knowledge on the genetic architecture of complex inherited, agronomic important traits is yet limited for the outbreeding rye. We have performed a QTL analysis based on a F2:3 design and testcross performance of 258 experimental hybrids in multi-environmental field trials. A genetic linkage map covering 964.9 cM based on SSR, conserved-orthologous set (COS), and mixed-phase dominant DArT markers allowed to describe 22 QTL with significant effects for grain yield, heading date, tiller number, and thousand grain weight across seven environments. Using rye COS markers, orthologous segments for these traits have been identified in the rice genome, which carry cloned and functionally characterized rice genes. The initial genome scan described here together with the existing knowledge on candidate genes provides the basis for subsequent analyses of the genetic and molecular mechanisms underlying agronomic important traits in rye.
  相似文献   

4.

Key message

Rye genetic resources provide a valuable source of new alleles for the improvement of frost tolerance in rye breeding programs.

Abstract

Frost tolerance is a must-have trait for winter cereal production in northern and continental cropping areas. Genetic resources should harbor promising alleles for the improvement of frost tolerance of winter rye elite lines. For frost tolerance breeding, the identification of quantitative trait loci (QTL) and the choice of optimum genome-based selection methods are essential. We identified genomic regions involved in frost tolerance of winter rye by QTL mapping in a biparental population derived from a highly frost tolerant selection from the Canadian cultivar Puma and the European elite line Lo157. Lines per se and their testcrosses were phenotyped in a controlled freeze test and in multi-location field trials in Russia and Canada. Three QTL on chromosomes 4R, 5R, and 7R were consistently detected across environments. The QTL on 5R is congruent with the genomic region harboring the Frost resistance locus 2 (Fr2) in Triticeae. The Puma allele at the FrR2 locus was found to significantly increase frost tolerance. A comparison of predictive ability obtained from the QTL-based model with different whole-genome prediction models revealed that besides a few large, also small QTL effects contribute to the genomic variance of frost tolerance in rye. Genomic prediction models assigning a high weight to the FrR2 locus allow increasing the selection intensity for frost tolerance by genome-based pre-selection of promising candidates.
  相似文献   

5.

Key message

Genetic analysis of data produced by novel root phenotyping tools was used to establish relationships between cowpea root traits and performance indicators as well between root traits and Striga tolerance.

Abstract

Selection and breeding for better root phenotypes can improve acquisition of soil resources and hence crop production in marginal environments. We hypothesized that biologically relevant variation is measurable in cowpea root architecture. This study implemented manual phenotyping (shovelomics) and automated image phenotyping (DIRT) on a 189-entry diversity panel of cowpea to reveal biologically important variation and genome regions affecting root architecture phenes. Significant variation in root phenes was found and relatively high heritabilities were detected for root traits assessed manually (0.4 for nodulation and 0.8 for number of larger laterals) as well as repeatability traits phenotyped via DIRT (0.5 for a measure of root width and 0.3 for a measure of root tips). Genome-wide association study identified 11 significant quantitative trait loci (QTL) from manually scored root architecture traits and 21 QTL from root architecture traits phenotyped by DIRT image analysis. Subsequent comparisons of results from this root study with other field studies revealed QTL co-localizations between root traits and performance indicators including seed weight per plant, pod number, and Striga (Striga gesnerioides) tolerance. The data suggest selection for root phenotypes could be employed by breeding programs to improve production in multiple constraint environments.
  相似文献   

6.
Carotenoids are a class of fat-soluble antioxidant vitamin compounds present in maize (Zea mays L.) that may provide health benefits to animals or humans. Four carotenoid compounds are predominant in maize grain: -carotene, -cryptoxanthin, zeaxanthin, and lutein. Although -carotene has the highest pro-vitamin A activity, it is present in a relatively low concentration in maize kernels. We set out to identify quantitative trait loci (QTL) affecting carotenoid accumulation in maize kernels. Two sets of segregating families were evaluated—a set of F2:3 lines derived from a cross of W64a x A632, and their testcross progeny with AE335. Molecular markers were evaluated on the F2:3 lines and a genetic linkage map created. High-performance liquid chromatography was performed to measure -carotene, -cryptoxanthin, zeaxanthin, and lutein on both sets of materials. Composite interval mapping identified chromosome regions with QTL for one or more individual carotenoids in the per se and testcross progenies. Notably QTL in the per se population map to regions with candidate genes, yellow 1 and viviparous 9, which may be responsible for quantitative variation in carotenoids. The yellow 1 gene maps to chromosome six and is associated with phytoene synthase, the enzyme catalyzing the first dedicated step in the carotenoid biosynthetic pathway. The viviparous 9 gene maps to chromosome seven and is associated with -carotene desaturase, an enzyme catalyzing an early step in the carotenoid biosynthetic pathway. If the QTL identified in this study are confirmed, particularly those associated with candidates genes, they could be used in an efficient marker-assisted selection program to facilitate increasing levels of carotenoids in maize grain.Communicated by P. Langridge  相似文献   

7.

Key message

A stable QTL that may be used in marker-assisted selection in wheat breeding programs was detected for yield, yield components and drought tolerance-related traits in spring wheat association mapping panel.

Abstract

Genome-wide association mapping has become a widespread method of quantitative trait locus (QTL) identification for many crop plants including wheat (Triticum aestivum L.). Its benefit over traditional bi-parental mapping approaches depends on the extent of linkage disequilibrium in the mapping population. The objectives of this study were to determine linkage disequilibrium decay rate and population structure in a spring wheat association mapping panel (n = 285–294) and to identify markers associated with yield and yield components, morphological, phenological, and drought tolerance-related traits. The study was conducted under fully irrigated and rain-fed conditions at Greeley, CO, USA and Melkassa, Ethiopia in 2010 and 2011 (five total environments). Genotypic data were generated using diversity array technology markers. Linkage disequilibrium decay rate extended over a longer genetic distance for the D genome (6.8 cM) than for the A and B genomes (1.7 and 2.0 cM, respectively). Seven subpopulations were identified with population structure analysis. A stable QTL was detected for grain yield on chromosome 2DS both under irrigated and rain-fed conditions. A multi-trait region significant for yield and yield components was found on chromosome 5B. Grain yield QTL on chromosome 1BS co-localized with harvest index QTL. Vegetation indices shared QTL with harvest index on chromosome 1AL and 5A. After validation in relevant genetic backgrounds and environments, QTL detected in this study for yield, yield components and drought tolerance-related traits may be used in marker-assisted selection in wheat breeding programs.  相似文献   

8.

Key message

We develop Bayesian function-valued trait models that mathematically isolate genetic mechanisms underlying leaf growth trajectories by factoring out genotype-specific differences in photosynthesis. Remote sensing data can be used instead of leaf-level physiological measurements.

Abstract

Characterizing the genetic basis of traits that vary during ontogeny and affect plant performance is a major goal in evolutionary biology and agronomy. Describing genetic programs that specifically regulate morphological traits can be complicated by genotypic differences in physiological traits. We describe the growth trajectories of leaves using novel Bayesian function-valued trait (FVT) modeling approaches in Brassica rapa recombinant inbred lines raised in heterogeneous field settings. While frequentist approaches estimate parameter values by treating each experimental replicate discretely, Bayesian models can utilize information in the global dataset, potentially leading to more robust trait estimation. We illustrate this principle by estimating growth asymptotes in the face of missing data and comparing heritabilities of growth trajectory parameters estimated by Bayesian and frequentist approaches. Using pseudo-Bayes factors, we compare the performance of an initial Bayesian logistic growth model and a model that incorporates carbon assimilation (A max) as a cofactor, thus statistically accounting for genotypic differences in carbon resources. We further evaluate two remotely sensed spectroradiometric indices, photochemical reflectance (pri2) and MERIS Terrestrial Chlorophyll Index (mtci) as covariates in lieu of A max, because these two indices were genetically correlated with A max across years and treatments yet allow much higher throughput compared to direct leaf-level gas-exchange measurements. For leaf lengths in uncrowded settings, including A max improves model fit over the initial model. The mtci and pri2 indices also outperform direct A max measurements. Of particular importance for evolutionary biologists and plant breeders, hierarchical Bayesian models estimating FVT parameters improve heritabilities compared to frequentist approaches.
  相似文献   

9.

Background

Cultivated rice (Oryza sativa L.) is endowed with a rich genetic variability. In spite of such a great diversity, the modern rice cultivars have narrow genetic base for most of the agronomically important traits. To sustain the demand of an ever increasing population, new avenues have to be explored to increase the yield of rice. Wild progenitor species present potential donor sources for complex traits such as yield and would help to realize the dream of sustained food security.

Results

Advanced backcross method was used to introgress and map new quantitative trait loci (QTLs) relating to yield and its components from an Indian accession of Oryza rufipogon. An interspecific BC2 testcross progeny (IR58025A/O. rufipogon//IR580325B///IR58025B////KMR3) was evaluated for 13 agronomic traits pertaining to yield and its components. Transgressive segregants were obtained for all the traits. Thirty nine QTLs were identified using interval mapping and composite interval mapping. In spite of it's inferiority for most of the traits studied, O. rufipogon alleles contributed positively to 74% of the QTLs. Thirty QTLs had corresponding occurrences with the QTLs reported earlier, indicating that these QTLs are stable across genetic backgrounds. Nine QTLs are novel and reported for the first time.

Conclusion

The study confirms that the progenitor species constitute a prominent source of still unfolded variability for traits of complex inheritance like yield. With the availability of the complete genome sequence of rice and the developments in the field of genomics, it is now possible to identify the genes underlying the QTLs. The identification of the genes constituting QTLs would help us to understand the molecular mechanisms behind the action of QTLs.  相似文献   

10.

Key message

The rye-derived dwarfing gene Ddw1 on chromosome 5R acts in triticale in considerably reducing plant height, increasing FHB severity and delaying heading stage.

Abstract

Triticale, an amphiploid hybrid between durum wheat and rye, is an European cereal mainly grown in Germany, France, Poland, and Belarus for feeding purposes. Dwarfing genes might further improve the genetic potential of triticale concerning lodging resistance and yield. However, they might have pleiotropic effects on other, agronomically important traits including Fusarium head blight. Therefore, we analyzed a population of 199 doubled haploid (DH) lines of the cross HeTi117-06 × Pigmej for plant height, heading stage, and FHB severity across 2 locations and 2 years. The most prominent QTL was detected on chromosome 5R explaining 48, 77, and 71 % of genotypic variation for FHB severity, plant height, and heading stage, respectively. The frequency of recovery in cross validation was ≥90 % for all three traits. Because the markers that detect dwarfing gene Ddw1 in rye are also in our population the most closely linked markers, we assume that this major QTL resembles Ddw1. For FHB severity two, for plant height three, and for heading stage five additional QTL were detected. Caused by the considerable genetic variation for heading stage and FHB severity within the progeny with the dwarfing allele, short-strawed, early heading and FHB-resistant lines can be developed when population size is large enough.  相似文献   

11.

Background and aims

Plant physiological traits and their relation to soil N availability was investigated as regulators of the distribution of understory shrub species along a slope in a Japanese cedar (Cryptomeria japonica) plantation in central Japan.

Methods

At the study site, previous studies demonstrated that both net and gross soil nitrification rates are high on the lower slope and there are dramatic declines in different sections of the slope gradient. We examined the distributions of understory plant species and their nitrate (NO 3 ? -N) use traits, and compared the results with the soil traits.

Results

Our results show that boundaries between different dominant understory species correspond to boundaries between different soil types. Leucosceptrum stellipilum occurs on soil with high net and gross nitrification rates. Hydrangea hirta is dominant on soil with high net and low gross nitrification rates. Pieris japonica occurs on soil with very low net and gross nitrification rates. Dominant understory species have species-specific physiological traits in their use of NO 3 ? -N. Pieris japonica lacks the capacity to use NO 3 ? -N as a N source, but other species do use NO 3 ? -N. Lindera triloba, whose distribution is unrelated to soil NO 3 ? -N availability, changes the extent to which it uses NO 3 ? -N in response to soil NO 3 ? -N availability.

Conclusions

Our results indicate that differences in the physiological capabilities and adaptabilities of plant species in using NO 3 ? -N as a N source regulate their distribution ranges. The identity of the major form of available soil N is therefore an environmental factor that influences plant distributions.  相似文献   

12.

Key Message

Genomic prediction using the Brassica 60 k genotyping array is efficient in oilseed rape hybrids. Prediction accuracy is more dependent on trait complexity than on the prediction model.

Abstract

In oilseed rape breeding programs, performance prediction of parental combinations is of fundamental importance. Due to the phenomenon of heterosis, per se performance is not a reliable indicator for F1-hybrid performance, and selection of well-paired parents requires the testing of large quantities of hybrid combinations in extensive field trials. However, the number of potential hybrids, in general, dramatically exceeds breeding capacity and budget. Integration of genomic selection (GS) could substantially increase the number of potential combinations that can be evaluated. GS models can be used to predict the performance of untested individuals based only on their genotypic profiles, using marker effects previously predicted in a training population. This allows for a preselection of promising genotypes, enabling a more efficient allocation of resources. In this study, we evaluated the usefulness of the Illumina Brassica 60 k SNP array for genomic prediction and compared three alternative approaches based on a homoscedastic ridge regression BLUP and three Bayesian prediction models that considered general and specific combining ability (GCA and SCA, respectively). A total of 448 hybrids were produced in a commercial breeding program from unbalanced crosses between 220 paternal doubled haploid lines and five male-sterile testers. Predictive ability was evaluated for seven agronomic traits. We demonstrate that the Brassica 60 k genotyping array is an adequate and highly valuable platform to implement genomic prediction of hybrid performance in oilseed rape. Furthermore, we present first insights into the application of established statistical models for prediction of important agronomical traits with contrasting patterns of polygenic control.
  相似文献   

13.

Main conclusion

A new wheat-rye 1BL?1RS translocation line, with the characteristics of superior stripe rust resistance and high thousand-kernel weight and grain number per spike, was developed and identified from progenies of wheat-rye- Psathyrostachys huashanica trigeneric hybrids.

Abstract

The wheat-rye 1BL?1RS translocation line from Petkus rye has contributed substantially to the world wheat production. However, due to extensive growing of cultivars with disease resistance genes from short arm of rye chromosome 1R and coevolution of pathogen virulence and host resistance, these cultivars successively lost resistance to pathogens. In this study, a new wheat-rye line K13-868, derived from the progenies of wheat-rye-Psathyrostachys huashanica trigeneric hybrids, was identified and analyzed using fluorescence in situ hybridization (FISH), genomic in situ hybridization (GISH), acid polyacrylamide gel electrophoresis (A-PAGE), and molecular markers. Cytological studies indicated that the mean chromosome configuration of K13-868 at meiosis was 2n = 42 = 0.14 I + 18.78 II (ring) + 2.15 II (rod). Sequential FISH and GISH results demonstrated that K13-868 was a compensating wheat-rye 1BL?1RS Robertsonian translocation line. Acid PAGE analysis revealed that clear specific bands of rye 1RS were expressed in K13-868. Simple sequence repeat (SSR) and rye 1RS-specific markers ω-sec-p1/ω-sec-p2 and O-SEC5′-A/O-SEC3′-R suggested that the 1BS arm of wheat had been substituted by the 1RS arm of rye. At the seedling and adult growth stage, compared with its recurrent wheat parent SM51 and six other wheat cultivars containing the 1RS arm in southwestern China, K13-868 showed high levels of resistance to stripe rust (Puccinia striiformis f. sp. tritici, Pst) pathogens prevalent in China, which are virulent to Yr10 and Yr24/Yr26. In addition, K13-868 expresses higher thousand-kernel weight and more grain number per spike than these controls in two growing seasons, suggesting that this line may carry yield-related genes of rye. This translocation line, with significant characteristics of resistance to stripe rust and high thousand-kernel weight and grain number per spike, could be utilized as a valuable germplasm for wheat improvement.
  相似文献   

14.

Key message

Spring growth in barley controlled by natural variation at Vrn-H1 and Vrn-H2 improved yield stability in marginal Syrian environments.

Abstract

The objective of the present study was to identify QTL influencing agronomic performance in rain-fed Mediterranean environments in a recombinant inbred line (RIL) population, ARKE derived from the Syrian barley landrace, Arta and the Australian feed cultivar, Keel. The population was field tested for agronomic performance at two locations in Syria for 4 years with two sowing dates, in autumn and winter. Genotypic variability in yield of the RIL population was mainly affected by year-to-year variation presumably caused by inter-annual differences in rainfall distribution. The spring growth habit and early flowering inherited from the Australian cultivar Keel increased plant height and biomass and improved yield stability in Syrian environments. QTL for yield and biomass coincided with the map location of flowering time genes, in particular the vernalisation genes Vrn-H1 and Vrn-H2. In marginal environments with terminal drought, the Vrn-H1 allele inherited from Keel improved final biomass and yield. Under changing climate conditions, such as shorter winters, reduced rainfall, and early summer drought, spring barley might thus outperform the traditional vernalisation-sensitive Syrian landraces. We present the ARKE population as a valuable genetic resource to further elucidate the genetics of drought adaptation of barley in the field.  相似文献   

15.

Background and aims

Previous research has suggested that root cortical aerenchyma (RCA) can enhance soil exploration and crop performance by decreasing root respiration. This trait is a potential breeding target for adaptation to abiotic stresses such as drought and low nutrient availability. However, little is known of phenotypic variation in aerenchyma or its distribution among root classes.

Methods

The spatial distribution of RCA was evaluated in freehand sections from 13 sites in the root systems of 11 recombinant inbred and commercial lines of maize (Zea mays). RCA variation was evaluated in 583 recombinant inbred lines of maize at one sampling position.

Results

RCA varied significantly among root classes and axial positions. Genotypic differences were observed for the amount of RCA at corresponding sampling locations and for the mean amount of RCA across all sampling locations, but genotypes did not differ in the proportional distribution of RCA within the whole root system. The amount of RCA in a cross-section was independent of several other anatomical traits.

Conclusions

There is substantial genetic variation for RCA, and this variation is independent of other anatomical traits. RCA can be phenotyped in greenhouse-grown plants by sampling the middle parts of second- or third-whorl crown roots.  相似文献   

16.

Key message

Analyses of registration trials of winter barley suggested that yield and yield stability can be enhanced by developing hybrid instead of line varieties.

Abstract

Yield stability is central to cope with the expected increased frequency of extreme weather conditions. The objectives of our study were to (1) examine the dimensioning of field trials needed to precisely portray yield stability of individual winter barley (Hordeum vulgare L.) genotypes, (2) compare grain yield performance and yield stability of two-rowed lines with those of six-rowed lines and hybrids, and (3) investigate the association of various agronomic traits with yield stability. Static and dynamic yield stability as well as grain yield performance was determined in five series of 3-year registration trials of winter barley in Germany. Each series included 4 or 5 six-rowed hybrids, 40–46 six-rowed inbred lines, as well as 42–49 two-rowed inbred lines. The genotypes were evaluated in 10–45 environments, i.e. year-by-location combinations. We found that precise assessment of yield stability of individual genotypes requires phenotyping in at least 40 test environments. Therefore, selection for yield stability is not usually feasible since the required number of test environments exceeds the common capacity of barley breeding programs. Also, indirect improvement of yield stability by means of agronomic traits seemed not possible since there was no constant association of any agronomic trait with yield stability. We found that compared with line varieties, hybrids showed on average higher grain yield performance combined with high dynamic yield stability. In conclusion, breeding hybrid instead of line varieties may be a promising way to develop high yielding and yield stable varieties.  相似文献   

17.

Key message

Next-generation sequencing enabled a fast discovery of a major QTL controlling early flowering in cucumber, corresponding to the FT gene conditioning flowering time in Arabidopsis.

Abstract

Next-generation sequencing technologies are making it faster and more efficient to establish the association of agronomic traits with molecular markers or candidate genes, which is the requirement for marker-assisted selection in molecular breeding. Early flowering is an important agronomic trait in cucumber (Cucumis sativus L.), but the underlying genetic mechanism is unknown. In this study, we identified a candidate gene for early flowering QTL, Ef1.1 through QTL-seq. Segregation analysis in F2 and BC1 populations derived from a cross between two inbred lines “Muromskij” (early flowering) and “9930” (late flowering) suggested quantitative nature of flowering time in cucumber. Genome-wide comparison of SNP profiles between the early and late-flowering bulks constructed from F2 plants identified a major QTL, designated Ef1.1 on cucumber chromosome 1 for early flowering in Muromskij, which was confirmed by microsatellite marker-based classical QTL mapping in the F2 population. Joint QTL-seq and traditional QTL analysis delimited Ef1.1 to an 890 kb genomic region. A cucumber gene, Csa1G651710, was identified in this region, which is a homolog of the FLOWERING LOCUS T (FT), the main flowering switch gene in Arabidopsis. Quantitative RT-PCR study of the expression level of Csa1G651710 revealed significantly higher expression in early flowering genotypes. Data presented here provide support for Csa1G651710 as a possible candidate gene for early flowering in the cucumber line Muromskij.  相似文献   

18.

Key message

Genetic locus for tetralocular ovary ( tet - o ) in Brassica rapa was identified and it was shown that the number of locules and width of silique are associated.

Abstract

Brassica rapa is a highly polymorphic species containing many vegetables and oleiferous types. An interesting group of oleiferous types is the yellow sarson group (subspecies trilocularis) grown mostly in eastern India. This group contains lines that have bilocular ovaries, a defining trait of Brassicaceae, but also lines that have tetralocular ovaries. Yellow sarson lines commonly have high silique width which is further enhanced in the tetralocular types. We mapped the locus influencing tetralocular ovary in B. rapa using three mapping populations (F2, F6 and F7) derived from a cross between Chiifu (subspecies pekinensis, having bilocular ovary) and Tetralocular (having tetralocular ovary). QTL mapping of silique width was undertaken using the three mapping populations and a F2 population derived from a cross between Chiifu and YSPB-24 (a bilocular line belonging to yellow sarson group). Qualitative mapping of the trait governing locule number (tet-o) in B. rapa mapped the locus to linkage group A4. QTL mapping for silique width detected a major QTL on LG A4, co-mapping with the tet-o locus in bilocular/tetralocular cross. This QTL was not detected in the bilocular/bilocular cross. Saturation mapping of the tet-o region with SNP markers identified Bra034340, a homologue of CLAVATA3 of Arabidopsis thaliana, as the candidate gene for locule number. A C → T transition at position 176 of the coding sequence of Bra034340 revealed co-segregation with the tetralocular phenotype. The study of silique related traits is of interest both for understanding evolution under artificial selection and for breeding of cultivated Brassica species.  相似文献   

19.

Key message

Biochemical characterization in combination with genetic analyses in BC 2 S 1 plants and near-isogenic lines led to the detection and validation of C. baccatum loci affecting flavor, terpenoid content and Brix level.

Abstract

The species Capsicum baccatum includes the most common hot peppers of the Andean cuisine, known for their rich variation in flavors and aromas. So far the C. baccatum genetic variation remained merely concealed for Capsicum annuum breeding, due to post-fertilization genetic barriers encountered in interspecific hybridization. However, to exploit the potential flavor wealth of C. baccatum we combined interspecific crossing with embryo rescue, resulting in a multi-parent BC2S1 population. Volatile and non-volatile compounds plus some physical characters were measured in mature fruits, in combination with taste evaluation by a sensory panel. An enormous variation in biochemical composition and sensory attributes was found, with almost all traits showing transgression. A population-specific genetic linkage map was developed for QTL mapping. BC2S1 QTLs were validated in an experiment with near-isogenic lines, resulting in confirmed genetic effects for physical, biochemical and sensory traits. Three findings are described in more detail: (1) A small C. baccatum LG3 introgression caused an extraordinary effect on flavor, resulting in significantly higher scores for the attributes aroma, flowers, spices, celery and chives. In an attempt to identify the responsible biochemical compounds few consistently up- and down-regulated metabolites were detected. (2) Two introgressions (LG10.1 and LG1) had major effects on terpenoid content of mature fruits, affecting at least 15 different monoterpenes. (3) A second LG3 fragment resulted in a strong increase in Brix without negative effects on fruit size. The mapping strategy, the potential application of studied traits and perspectives for breeding are discussed.  相似文献   

20.

Key message

Genetic basis of grain yield heterosis relies on the cumulative effects of dominance, overdominance, and epistasis in maize hybrid Yuyu22.

Abstract

Heterosis, i.e., when F1 hybrid phenotypes are superior to those of the parents, continues to play a critical role in boosting global grain yield. Notwithstanding our limited insight into the genetic and molecular basis of heterosis, it has been exploited extensively using different breeding approaches. In this study, we investigated the genetic underpinnings of grain yield and its components using “immortalized F2” and recombinant inbred line populations derived from the elite hybrid Yuyu22. A high-density linkage map consisting of 3,184 bins was used to assess (1) the additive and additive-by-additive effects determined using recombinant inbred lines; (2) the dominance and dominance-by-dominance effects from a mid-parent heterosis dataset; and (3) the various genetic effects in the “immortalized F2” population. Compared with a low-density simple sequence repeat map, the bin map identified more quantitative trait loci, with higher LOD scores and better accuracy of detecting quantitative trait loci. The bin map showed that, among all traits, dominance was more important to heterosis than other genetic effects. The importance of overdominance/pseudo-overdominance was proportional to the amount of heterosis. In addition, epistasis contributed to heterosis as well. Phenotypic variances explained by the QTLs detected were close to the broad-sense heritabilities of the observed traits. Comparison of the analyzed results obtained for the “immortalized F2” population with those for the mid-parent heterosis dataset indicated identical genetic modes of action for mid-parent heterosis and grain yield performance of the hybrid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号