首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Powdery mildew, caused by Blumeria graminis f.sp. tritici, is a major wheat disease in maritime and temperate climates. Breeding for race-non-specific or partial resistance is a cost-effective and environmentally friendly disease control strategy. The German spring wheat cultivar Naxos has proven to be a good source for partial resistance to powdery mildew. The objectives of the present study were to map the resistance loci in Naxos with use of high-density SNP markers in the Shanghai3/Catbird x Naxos inbred line population and validate the results in a different genetic background; Soru#1 x Naxos. Both populations were genotyped with the Illumina iSelect 90K wheat chip, and integrated linkage maps developed by inclusion of previously genotyped SSR and DArT markers. With the new linkage maps, we detected a total of 12 QTL for powdery mildew resistance in Shanghai3/Catbird x Naxos, of which eight were derived from Naxos. Previously reported QTL on chromosome arms 1AS and 2BL were more precisely mapped and the SNP markers enabled discovery of new QTL on 1AL, 2AL, 5AS and 5AL. In the Soru#1 x Naxos population, four QTL for powdery mildew resistance were detected, of which three had resistance from Naxos. This mapping verified the 1AS and 2AL QTL detected in Shanghai3/Catbird x Naxos, and identified a new QTL from Naxos on 2BL. In conclusion, the improved linkage maps with SNP markers enabled discovery of new resistance QTL and more precise mapping of previously known QTL. Moreover, the results were validated in an independent genetic background.  相似文献   

2.
The semi-dominantly acting Mlg resistance locus in barley confers race-specific resistance to the obligate biotrophic fungus Erysiphe graminis f.sp. hordei. A high-resolution genetic map was constructed at Mlg based on a cross between the near-isogenic barley lines Pallas BC5 Mlg and Pallas mlg. A total of 2000 F2 progeny were inspected by cleaved amplified polymorphic sequence (CAPS) analysis, defining a 4.47 cM interval encompassing the resistance locus. Pathogen challenge of the segregants with multiple powdery mildew isolates uncovered a novel resistance specificity in Pallas BC5 Mlg. Probes from within 4.0 cM of Mlg were mapped in rice, revealing orthologues on five different rice chromosomes and suggesting multiple breaks of chromosomal collinearity in this region between the two grass species. The most tightly Mlg-linked RFLP marker, MWG032, was shown to reliably detect the presence of the resistance allele in a collection of 30 European barley cultivars. Received: 23 March 2000 / Accepted: 20 April 2000  相似文献   

3.
This paper reports on six Arabidopsis accessions that show resistance to a wild isolate of the powdery mildew pathogen, Erysiphe cichoracearum . Resistance at 7 days post-inoculation in these accessions was characterized by limited fungal growth and sporadic development of chlorotic or necrotic lesions at inoculation sites. Three accessions, Wa-1, Kas-1 and SI-0, were highly resistant, while the other accessions permitted some fungal growth and conidiation. Papilla formation was a frequent host response; however, cell death appeared to be neither a rapid nor a common response to infection. To determine the genetic basis of resistance, segregation analyses of progeny from crosses between each of the resistant accessions and Columbia ( gl1 ), which is susceptible to the powdery mildew pathogen, were performed. For all accessions except SI-0, resistance was conferred by a single locus. SI-0 was unique in that two unlinked loci controlled the disease reaction phenotype. In accessions Wa-1, Kas-1, Stw-0 and Su-0, powdery mildew resistance was encoded by a semi-dominant allele. However, susceptibility was dominant to resistance in accessions Te-0 and SI-0. Mapping studies revealed that powdery mildew resistances in Kas-1, Wa-1, Te-0, Su-0 and Stw-0 were controlled by five independent loci. This study suggests that the Arabidopsis powdery mildew disease will be a suitable model system in which to investigate powdery mildew diseases.  相似文献   

4.
Powdery mildew (PM) is a common disease caused by Blumeria graminis, which affects cereals and has recently adapted to triticale. Adult-plant resistance (APR) genes provide durable protection of crops from the disease. Quantitative trait loci corresponding to the APR effects were mapped in an F2 population of “Lamberto” (susceptible) × “Moderto” (resistant). A genetic map of winter triticale was constructed based on the segregation of 863 DArT, 38 microsatellite and 10 resistance gene analogue markers. Composite interval mapping (CIM) was applied to identify three QTLs for maximum disease severity (MDS) and two for the area under disease progress curve (AUDPC) conferring resistance to the powdery mildew on chromosomes: 6A, 7A, 1B and 4R. The 39% variation in AUDPC was explained by the main QTL localised on chromosome 4R. Genes coding TRIUR3 proteins, serine/threonine protein kinase and cell wall associated kinases were localised in silico within the QTL and alternative DNA markers were proposed for flexible use in laboratories of diversified throughput.  相似文献   

5.
The Spanish landrace-derived inbred line SBCC97, together with other lines from the Spanish Barley Core Collection, displays high resistance to powdery mildew, caused by the fungus Blumeria graminis f. sp. hordei. The objective of this study was to map quantitative trait loci (QTLs) for resistance to powdery mildew in a recombinant inbred line population derived from a cross between SBCC97 and the susceptible cultivar ‘Plaisant’. Phenotypic analysis was performed using four B. graminis isolates, and genetic maps were constructed with mainly simple sequence repeat (SSR) markers, following a sequential genotyping strategy. Two major QTLs with large effects were identified on chromosome 7H, and they accounted for up to 45% of the total phenotypic variance. The alleles for resistance at each QTL were contributed by the Spanish parent SBCC97. One locus was mapped to the short arm of chromosome 7HS, and was flanked by the resistance gene analogue (RGA) marker S9202 and the SSR GBM1060. This corresponded to the same chromosomal region in which a major race-specific resistance gene from Hordeum vulgare ssp. spontaneum, designated as mlt, had been identified previously. The second QTL was linked tightly to marker EBmac0755, and it shared its chromosomal location with the qualitative resistance gene Mlf, which has only been described previously in the wild ancestor H. spontaneum. This is the first report of these two QTLs occurring together in cultivated barley, and it paves the way for their use in barley breeding programs that are designed to transfer resistance alleles into elite cultivars.  相似文献   

6.
Sugar-beet powdery mildew, caused by the fungus Erysiphe betae, now occurs in all sugar-beet growing areas and can reduce sugar yield by up to 30%. Powdery mildew resistant plants from three novel sources were crossed with sugar beet to generate segregating populations. Evaluation of resistance was carried out in artificially inoculated field and controlled environment tests. The resistance level in two of the sources was found to be significantly higher than that in currently available sugar-beet cultivars. AFLP analysis was used in combination with bulked segregant analysis to develop markers linked to the resistant phenotype in each population. Five dominant major resistance genes were identified and assigned the proposed symbols Pm2 to Pm6. Pm3 conferred complete resistance to powdery mildew; the other genes conferred high levels of partial resistance. From the use of anchoring SNP markers, two genes were located to chromosome II and three to chromosome IV. Two of the genes on chromosome IV mapped to the same location and one of the genes on chromosome II mapped to the same region as the previously identified Pm1 gene. With the availability of these genes there is now excellent potential for achieving durable resistance to sugar-beet powdery mildew, thus reducing or obviating the need for chemical control.  相似文献   

7.
Nisar M  Ghafoor A 《Genetika》2011,47(3):345-348
The aim of this study was to investigate the inheritance of powdery mildew disease and to tag it with a DNA marker to utilize for the marker-assisted selection (MAS) breeding program. The powdery mildew resistant genotype Fallon(er) and susceptible genotype 11760-3ER were selected from 177 genotypes by heavy infestation of germplasm with Erysiphe pisi through artificial inoculation. The F1 plants of the cross Fallon/11760-3 indicated the dominance of the susceptible allele, while F2 plants segregated in 3 : 1 ratio (susceptible : resistant) that fit for goodness of fitness by chi2 (P > 0.07), indicating monogenic recessive inheritance for powdery mildew resistance in Pisum sativum. A novel RAPD marker OPB18 (5'-CCACAGCAGT-3') was linked to the er-1 gene with 83% probability with a LOD score of 4.13, and was located at a distance of 11.2 cM from the er-1 gene.  相似文献   

8.
The barley ROP GTPase HvRACB is a susceptibility factor of barley to powdery mildew caused by the biotrophic fungus Blumeria graminis f.sp. hordei (Bgh). In a recent publication, we reported about a MICROTUBULE-ASSOCIATED ROP GTPASE-ACTIVATING PROTEIN 1 (HvMAGAP1) of barley. Transient-induced gene silencing or overexpression of HvMAGAP1 resulted in enhanced or reduced susceptibility to Bgh, respectively, indicating a possible HvRACB-antagonistic function of HvMAGAP1 in interaction with Bgh. HvMAGAP1 also influences the polarity of cortical microtubules in interaction with Bgh. In AtROPGAP1 and AtROPGAP4, Arabidopsis homologs of HvMAGAP1, knock-out T-DNA insertions enhanced susceptibility of Arabidopsis to the virulent powdery mildew fungus Erysiphe cruciferarum, indicating functions of ROPGAPs in pathogen interaction of monocots and dicots. Here we discuss the role of AtROPGAP1 and AtROPGAP4 in Arabidopsis pathogenesis of powdery mildew in some more detail.  相似文献   

9.
Dose–response relationship between resistance of wheat seedlings (Triticum aestivum, cultivar Zarya) to Erysiphe graminis f. sp. tritici Marchal. (Syn. Blumeria graminis), a causal organism of wheat powdery mildew and exogenous zeatin has been investigated. Two-week-old seedlings were inoculated with the pathogen. Zeatin or zeatinriboside were added to the nutrient solution immediately after inoculation. The dose–response curve of cytokinin in the most cases was multiphasic, with peaks of increased susceptibility occurring at 0.25–1.5 and 1.5–9 μM cytokinin, separated by a region of increased resistance at 0.5–3 μM cytokinin. The change in mineral nutrition or simultaneous treatment with thidiazuron revealed alterations of the dose–response curve ranging from a curve with maximum of resistance to a curve with maximum of susceptibility. Both multiphase nature of dose–response and its variability were proposed as possible explanations for earlier observed discrepancies in experimental data on modification of disease resistance by cytokinins. A mathematical model for two metabolic processes with substrate inhibition connected in-series was suggested to explain the multiphase dose–response. In this model, the product of the first reaction was used as substrate for the second reaction. Numerical experiments showed the changes in the shape of dose–response curve with changes in parameters dependent of cytokinin metabolism.  相似文献   

10.
Primers for the polymerase chain reaction (PCR) were tailored to selectively amplify RFLP marker alleles associated with resistance and susceptibility for powdery mildew in cereals. The differentiation between marker alleles for susceptible and resistant genotypes is based on the discrimination of a single nucleotide by using allele-specific oligonucleotides as PCR primers. The PCR assays developed are diagnostic for RFLP alleles at the loci MWG097 in the barley genome and Whs350 in the wheat genome. The first marker locus is closely linked to MlLa resistance in barley, while the latter is linked to Pm2 resistance locus in wheat. PCR analysis of 31 barley and 30 wheat cultivars, with some exceptions, verified the presence or absence of the resistance loci investigated. These rapid PCR-based approaches are proposed as an efficient alternative to conventional procedures for selecting powdery mildew-resistant genotypes in breeding programs.  相似文献   

11.
Resistance breeding often requires the introgression and tracking of resistance loci from wild species into domesticated backgrounds, typically with the goal of pyramiding multiple resistance genes, to provide durable disease resistance to breeding selections and ultimately cultivars. While molecular markers are commonly used to facilitate these efforts, high genetic diversity and divergent marker technologies can complicate marker-assisted breeding strategies. Here, amplicon sequencing (AmpSeq) was used to integrate SNP markers with dominant presence/absence markers derived from genotyping-by-sequencing and other genotyping technologies, for the simultaneous tracking of five loci for resistance to grapevine powdery mildew. SNP haploblocks defined the loci for REN1, REN2 and REN3, which confer quantitative resistance phenotypes that are challenging to measure via field ratings of natural infections. Presence/absence markers for RUN1 and REN4 were validated to predict qualitative resistance phenotypes and corresponded with previous presence/absence fluorescent electrophoretic assays. Thus, 37 AmpSeq-derived markers were identified for the five loci, and markers for REN1, REN2, REN4 and RUN1 were used for multiplexed screening and selection within diverse breeding germplasm. Poor transferability of SNP markers indicated imperfect marker-trait association in some families. Together, AmpSeq SNP haploblocks and presence/absence markers provide a high-throughput, cost-effective tool to integrate divergent technologies for marker-assisted selection and genetic analysis of introgressed disease resistance loci in grapevine.  相似文献   

12.
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most devastating foliar diseases of wheat and imposes a constant challenge on wheat breeders. Xiaohongpi, a Chinese landrace of wheat (Triticum aestivum L.), shows resistance to powdery mildew during the entire growth stage in the field and under controlled conditions. The F1 plants from cross of the powdery mildew susceptible cultivar Yangmai158 with Xiaohongpi were susceptible to isolate Bgt19, the locally most prevalent Bgt isolate. In the derived F2 population and F3 progenies, the resistance segregation deviated significantly from the one-gene Mendelian ratio. However, marker analysis indicated that only one recessive gene conferred the resistance, which co-segregated with Xsts-bcd1231 that showed co-segregation with Pm4a in different studies. Allelism test indicated that this recessive resistance gene, designated as pmX, is either allelic or tightly linked to Pm4a. The pmX gene was different from Pm4 alleles in resistance spectrum. Examination of the genotype frequencies at pmX and the linked marker loci in the F2 population showed that a genetic variation favoring the transmission of Xiaohongpi alleles could be the cause of deviated segregation. Mapping of the pmX-linked markers using Chinese Spring deletion lines indicated that it resides in the 0.85–1.00 bin of chromosome 2AL.  相似文献   

13.
14.
Summary The linkage relationship among the loci Hor1, Hor2, Ml-k and Ml-a on the short arm of chromosome 5 was studied by progeny testing the F2 generation of two crosses. The loci Hor1 and Hor2 code for polypeptides of the storage protein hordein (prolamin) and the loci Ml-k and Ml-a determine the resistance reaction with some powdery mildew fungi cultures. The order of the loci is Ml-k, Hor1, Ml-a, and Hor2, the first named being nearest the centromere. The recombination percentage between Hor1 and Hor2 was determined in the F1 and F2 generations in both crosses, the combined estimate being 7.4±0.9 per cent. The recombination percentage estimated between Ml-k and Hor1 was 4.0±1.3, between Hor1 and Ml-a, 5.3±1.1, and between Ml-a and Hor2, 6.1±1.2. The estimates involving the Ml- loci were all probably a little too high.  相似文献   

15.
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a major fungal disease in common wheat (Triticum aestivum L.) worldwide. The Chinese winter wheat cultivar Lumai 21 has shown good and stable adult plant resistance for 19 years. The aim of this study was to map quantitative trait loci (QTLs) for resistance to powdery mildew in a population of 200 F3 lines from the cross Lumai 21/Jingshuang 16. The population was tested for powdery mildew reaction in Beijing and Anyang in the 2005–2006 and 2006–2007 cropping seasons, providing data for 4 environments. A total of 1,375 simple sequence repeat (SSR) markers were screened for associations with powdery mildew reactions, initially in bulked segregant analysis. Based on the mean disease values averaged across environments, broad-sense heritabilities of maximum disease severity and area under the disease progress curve were 0.96 and 0.77, respectively. Three QTLs for adult plant resistance were detected by inclusive composite interval mapping. These were designated QPm.caas-2BS, QPm.caas-2BL and QPm.caas-2DL, respectively, and explained from 5.4 to 20.6% of the phenotypic variance across environments. QPm.caas-2BS and QPm.caas-2DL were likely new adult plant resistance QTLs flanked by SSR markers Xbarc98Xbarc1147 and Xwmc18Xcfd233, respectively. These markers could be useful for improving wheat powdery mildew resistance in breeding programs.  相似文献   

16.
To identify the powdery mildew (PM) resistance gene in mungbean, inter-simple sequence repeat (ISSR) markers and newly developed ISSR-anchored resistance gene analog (ISSR-RGA) markers were evaluated. When F2:7 and F2:8 recombinant inbred line populations derived from a cross between CN72 (susceptible cultivar in Thailand) and V4718 (resistant line from Asian Vegetable Research and Development Center) were evaluated for PM resistance under field conditions, the PM resistance gene from V4718 was found to be inherited as a single major gene. Fifteen out of 75 ISSR primers produced 27 DNA bands putatively associated with PM resistance in bulk segregant analysis (BSA). Ten ISSR primers were combined with four RGA primers homologous to the nucleotide-binding site and kinase domains of resistance (R) genes to generate 40 ISSR-RGA primer combinations. When these 40 ISSR-RGA primer combinations and 10 corresponding ISSR primers were used in BSA, 873 ISSR and 756 ISSR-RGA loci were amplified. Fifty-two of 756 ISSR-RGA loci were new, and 11 of these 23 ISSR-RGA loci were putatively associated with the PM resistance. Simple linear regression confirmed that 5 of the 27 ISSR markers and 3 of the 11 ISSR-RGA markers were significantly associated with the PM resistance gene. When these eight ISSR and ISSR-RGA markers were used for quantitative trait loci (QTL) analysis, multiple interval mapping identified a major QTL, qPMC72V18-1, explaining up to 92.4% of the phenotypic variation, flanked by I42PL229 and I85420 markers at the distance of 4 and 9 cM, respectively. These results suggest that ISSR and ISSR-RGA markers are highly efficient tools for mapping PM resistance gene in mungbean. The markers closely linked to the PM resistance gene will be useful for future marker-assisted selection to develop mungbean varieties resistant to PM.  相似文献   

17.
18.
Summary A biochemical study on phenolic (total phenols and orthodihydroxy phenols) content and on the activities of phenol oxidizing enzymes (peroxidase and polyphenol oxidase) in pea cultivars resistant and susceptible to powdery mildew infection revealed that the resistant cultivars contained higher levels of phenolics and phenol-oxidizing enzymes than the susceptible ones. A further study of their F1s, F2s and backcross progenies suggested a high heritability for all biochemical traits. The correlation coefficients between the biochemical parameters and the disease index were also high. Both additive (d) and dominant () components were found to contribute to the inheritance of these constituents.Associate Professor (Genetics), Department of Basic Sciences  相似文献   

19.
20.

Key message

Resistance factors against non-adapted powdery mildews were mapped in barley. Some QTLs seem effective only to non-adapted mildews, while others also play a role in defense against the adapted form.The durability and effectiveness of nonhost resistance suggests promising practical applications for crop breeding, relying upon elucidation of key aspects of this type of resistance. We investigated which genetic factors determine the nonhost status of barley (Hordeum vulgare L.) to powdery mildews (Blumeria graminis). We set out to verify whether genes involved in nonhost resistance have a wide effectiveness spectrum, and whether nonhost resistance genes confer resistance to the barley adapted powdery mildew. Two barley lines, SusBgtSC and SusBgtDC, with some susceptibility to the wheat powdery mildew B. graminis f.sp. tritici (Bgt) were crossed with cv Vada to generate two mapping populations. Each population was assessed for level of infection against four B. graminis ff.spp, and QTL mapping analyses were performed. Our results demonstrate polygenic inheritance for nonhost resistance, with some QTLs effective only to non-adapted mildews, while others play a role against adapted and non-adapted forms. Histology analyses of nonhost interaction show that most penetration attempts are stopped in association with papillae, and also suggest independent layers of defence at haustorium establishment and conidiophore formation. Nonhost resistance of barley to powdery mildew relies mostly on non-hypersensitive mechanisms. A large-effect nonhost resistance QTL mapped to a 1.4 cM interval is suitable for map-based cloning.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号