首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular genetic studies of plant dwarf mutants have indicated that gibberellin (GA) and brassinosteroid (BR) are two major factors that determine plant height; dwarf mutants that are caused by other defects are relatively rare, especially in monocot species. Here, we report a rice (Oryza sativa) dwarf mutant, dwarf and gladius leaf 1 (dgl1), which exhibits only minimal response to GA and BR. In addition to the dwarf phenotype, dgl1 produces leaves with abnormally rounded tip regions. Positional cloning of DGL1 revealed that it encodes a 60-kD microtubule-severing katanin-like protein. The protein was found to be important in cell elongation and division, based on the observed cell phenotypes. GA biosynthetic genes are up-regulated in dgl1, but the expression of BR biosynthetic genes is not enhanced. The enhanced expression of GA biosynthetic genes in dgl1 is not caused by inappropriate GA signaling because the expression of these genes was repressed by GA3 treatment, and degradation of the rice DELLA protein SLR1 was triggered by GA3 in this mutant. Instead, aberrant microtubule organization caused by the loss of the microtubule-severing function of DGL1 may result in enhanced expression of GA biosynthetic genes in that enhanced expression was also observed in a BR-deficient mutant with aberrant microtubule organization. These results suggest that the function of DGL1 is important for cell and organ elongation in rice, and aberrant DGL1-mediated microtubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling.  相似文献   

2.
Plant height is one of the most important agronomic traits of plant architecture, and also affects grain yield in rice. In this study, we obtained a novel dwarf rice mutant of japonica variety Shennong9816, designated Shennong9816d. Compared with wild-type, the Shennong9816d plant height was significantly reduced, and the tiller number significantly increased. Additionally, the mutant yield component, and the number of large and small vascular bundles were significantly decreased compared with wild-type. Genetic analysis indicated that the Shennong9816d dwarf phenotype was controlled by a recessive nuclear gene, while the plant was shown to be sensitive to gibberellic acid. Using a large F2 population derived from a cross between Shennong9816d and the indica rice variety Habataki, the osh15(t) gene was fine mapped between RM20891 and RM20898, within a physical distance of 73.78 kb. Sequencing analysis showed that Shennong9816d carries a 1 bp mutation and a 30 bp insertion in the OSH15 region. These results suggest that osh15(t) is a novel allelic mutant originally derived from japonica variety Shennong9816, which may be useful for introducing the semi-dwarf phenotype to improve plant architecture in rice breeding practice.  相似文献   

3.
Gibberellin A4&7 was more effective than gibberellic acid in increasing shoot elongation when applied to the apex of intact Lycopersicum esculentum seedlings of Tiny Tim, a dwarf cultivar, and Winsall, a tall cultivar. After 14 days, gibberellic acid and gibberellin A4&7 stimulated growth of the dwarf more than the tall tomato. In tall tomato the application of indole-3-acetic acid alone (6.1 μg/plant) showed an inhibitory growth effect, but when applied with 17.5 μg per plant of gibberellic acid, it had a synergistic effect at 7 days but not at 14 days. When the auxin concentration was reduced to 0.61 μg per plant a synergistic effect was observed on tall plants at 7 and 14 days between indole-3-acetic acid and gibberellic acid. Application of gibberellin A4&7 with auxin did not give a synergistic response in tall or dwarf tomato.  相似文献   

4.
Dwarfing and sensitivity to the duration of a single inductive dark period for flowering ofPharbitis nil in F2 progeny of a cross between the tall strain Tendan, and the dwarf, Kidachi appear to be controlled by the alleles at two independent loci. Progeny of a similar cross between the tall strain Violet and the dwarf Kidachi at F2 and F3 also showed single locus segregation for tall: dwarf plants. In this cross, differences in photoperiodic response could be identified in F3 families but they were not simply inherited. There was some evidence of difficulties with classification of the F2 plants, but also, the flowering of the F1 between the two less sensitive strains Tendan and Violet indicated complex inheritance of their photoperiodic response. Complementary dominant alleles at three independent loci may be necessary for flowering in even shorter dark periods with the sensitive strain Kidachi. The dwarf strain Kidachi has a reduced gibberellin (GA) content (Barendse and Lang 1972), it flowers in a short dark period without terminal flowering, and it responds positively to GA application both for flowering and growth. However, since control of dwarfing and photoperiodic sensitivity can be separated genetically, there is no strick link between the gibberellin responsiveness of Kidachi for its growth and flowering. Despite the complexity of flowering genetics in Violet×Kidachi, a short-dark-period-sensitive, terminal flowering and tall F7 line was obtained in a pedigree previously held heterozygous for the dwarf: tall character but not selected for flowering time. Thus, flowering in a short dark period can also be obtained in the presence of the non-dwarfing allele from strain Violet, again demonstrating genetic independence.  相似文献   

5.
The most common dwarfing genes in wheat, Rht-B1b and Rht-D1b, classified as gibberellin-insensitive (GAI) dwarfing genes due to their reduced response to exogenous GA, have been verified as encoding negative regulators of gibberellin signaling. In contrast, the response of gibberellin-responsive (GAR) dwarfing genes, such as Rht12, to exogenous GA is still unclear and the role of them, if any, in GA biosynthesis or signaling is unknown. The responses of Rht12 to exogenous GA3 were investigated on seedling vigour, spike phenological development, plant height and other agronomic traits, using F2∶3 and F3∶4 lines derived from a cross between Ningchun45 and Karcagi-12 in three experiments. The application of exogenous GA3 significantly increased coleoptile length and seedling leaf 1 length and area. While there was no significant difference between the dwarf and the tall lines at the seedling stage in the responsiveness to GA3, plant height was significantly increased, by 41 cm (53%) averaged across the three experiments, in the GA3-treated Rht12 dwarf lines. Plant height of the tall lines was not affected significantly by GA3 treatment (<10 cm increased). Plant biomass and seed size of the GA3-treated dwarf lines was significantly increased compared with untreated dwarf plants while there was no such difference in the tall lines. GA3-treated Rht12 dwarf plants with the dominant Vrn-B1 developed faster than untreated plants and reached double ridge stage 57 days, 11 days and 50 days earlier and finally flowered earlier by almost 7 days while the GA3-treated tall lines flowering only 1–2 days earlier than the untreated tall lines. Thus, it is clear that exogenous GA3 can break the masking effect of Rht12 on Vrn-B1 and also restore other characters of Rht12 to normal. It suggested that Rht12 mutants may be deficient in GA biosynthesis rather than in GA signal transduction like the GA-insensitive dwarfs.  相似文献   

6.
Brassinosteroids are widely distributed plant compounds that modulate cell elongation and division, but little is known about the mechanism of action of these plant growth regulators. To investigate brassinosteroids as signals influencing plant growth and development, we identified a brassinosteroid-insensitive mutant in Arabidopsis thaliana (L.) Henyh. ecotype Columbia. The mutant, termed bri1, did not respond to brassinosteroids in hypocotyl elongation and primary root inhibition assays, but it did retain sensitivity to auxins, cytokinins, ethylene, abscisic acid, and gibberellins. The bri1 mutant showed multiple deficiencies in developmental pathways that could not be rescued by brassinosteroid treatment including a severely dwarfed stature; dark green, thickened leaves; males sterility; reduced apical dominance; and de-etiolation of dark-grown seedlings. Genetic analysis suggests that the Bri1 phenotype is caused by a recessive mutation in a single gene with pleiotropic effects that maps 1.6 centimorgans from the cleaved, amplified, polymorphic sequence marker DHS1 on the bottom of chromosome IV. The multiple and dramatic effects of mutation of the BRI1 locus on development suggests that the BRI1 gene may play a critical role in brassinosteroid perception or signal transduction.  相似文献   

7.

Key message

GmDW1 encodes an ent-kaurene synthase (KS) acting at the early step of the biosynthesis pathway for gibberellins (GAs) and regulates the development of plant height in soybean.

Abstract

Plant height is an important component of plant architecture, and significantly affects crop breeding practices and yield. Here, we report the characterization of an EMS-induced dwarf mutant (dw) of the soybean cultivar Zhongpin 661 (ZDD23893). The dw mutant displayed reduced plant height and shortened internodes, both of which were mainly attributed to the longitudinally decreased cell length. The bioactive GA1 (gibberellin A1) and GA4 (gibberellin A4) were not detectable in the stem of dw, and the dwarf phenotype could be rescued by treatment with exogenous GA3. Genetic analysis showed that the dwarf trait of dw was controlled by a recessive nuclear gene. By combining linkage analysis and mapping-by-sequencing, we mapped the GmDW1 gene to an approximately 460-kb region on chromosome (Chr.) 8, containing 36 annotated genes in the reference Willliams 82 genome. Of these genes, we identified two nonsynonymous single nucleotide polymorphisms (SNPs) that are present in the encoding regions of Gmdw1 and Glyma.08G165100 in dw, respectively. However, only the SNP mutation (T>A) at nucleotide 1224 in Gmdw1 cosegregated with the dwarf phenotype. GmDW1 encodes an ent-kaurene synthase, and was expressed in various tissues including root, stem, and leaf. Further phenotypic analysis of the allelic variations in soybean accessions strongly indicated that GmDW1 is responsible for the dwarf phenotype in dw. Our results provide important information for improving our understanding of the genetics of soybean plant height and crop breeding.
  相似文献   

8.
Although cell elongation is a basic function of plant morphogenesis, many of the molecular events involved in this process are still unknown. In this work an extremely dwarf mutant, originally named bul, was used to study one of the main processes of plant development, cell elongation. Genetic analyses revealed that the BUL locus was linked to the nga172 marker on chromosome 3. Recently, after mapping the new dwf7 mutation of Arabidopsis, which is allelic to ste1, it was reported that dwf7 is also linked to the same marker. Sterol analyses of the bul1-1 mutant indicated that bul1-1 is defective in the Δ7-sterol-C5-desaturation step leading to brassinosteroid biosynthesis. Considering these findings, we designated our bul mutant as bul1-1/dwf7-3/ste1-4. The bul1-1 mutant was characterized by a very dwarf phenotype, with delayed development and reduced fertility. The mutant leaves had a dark-green colour, which was probably due to continuous stomatal closure. The bul1-1 mutant showed a partially de-etiolated phenotype in the dark. Cellular characterization and rescue experiments with brassinosteroids demonstrated the involvement of the BUL1-1 protein in brassinosteroid-dependent plant growth processes. Received: 28 April 2000 / Accepted: 6 October 2000  相似文献   

9.
The photomorphogenic mutation lv in the garden pea (Pisum sativum L.), which appears to reduce the response to light-stable phytochrome, has been isolated on a tall, late photoperiodic genetic background and its effects further characterised. Plants possessing lv have a reduced flowering response to photoperiod relative to wild-type plants, indicating that light-stable phytochrome may have a flower-inhibitory role in the flowering response of long-day plants to photoperiod. In general, lv plants are longer and have reduced leaf development relative to Lv plants. These differences are maximised under continuous light from fluorescent lamps (containing negligible far-red (FR) light), and decrease with addition of FR to the incident light. Enrichment of white light from fluorescent lamps with FR promotes stem elongation in the wild type but causes a reduction in elongation in the lv mutant. This “negative” shade-avoidance response appears to be the consequence of a strong inhibitory effect of light rich in FR, revealed in lv plants in the absence of a normal response to red (R) light. These results indicate that the wild-type response to the R: FR ratio may be comprised of two distinct photoresponses, one in which FR supplementation promotes elongation by reducing the inhibitory effect of R, and the other in which light rich in FR actively inhibits elongation. This hypothesis is discussed in relation to functional differentiation of phytochrome types in the light-grown plant. Gene lw has been reported previously to reduce internode length and the response to gibberellin A1, and to delay flowering. The present study shows that the lw mutation confers an increased response to photoperiod. In all these responses the lw phenotype is superficially “opposite” to the lv phenotype. The possibility that the mutation might primarily affect light perception was therefore considered. The degree of dwarfing of lw plants was found to depend upon light quality and quantity. Dwarfing is more extreme in plants grown under continuous R light than in those grown in continuous FR or blue light or in darkness. Studies of the fluence-rate response show that the lw mutation imparts a lower fluence requirement for inhibition of elongation by white light from fluorescent lamps. Dark-grown lw plants are more strongly inhibited by a R pulse than are wild-type plants but, as in the wild type, this inhibition remains reversible by FR. Light-grown lw plants show an exaggerated elongation response to end-of-day FR light. Taken together, these findings indicate that the lw mutant may be hypersensitive to phytochrome action.  相似文献   

10.
文章通过对所构建的水稻突变体库进行大规模筛选,获得一个稳定遗传的矮秆突变体,与野生型日本晴相比,该突变体表现为植株矮化、叶片卷曲、分蘖减少和不育等性状,命名为dtl1(dwarf and twist leaf 1)。dtl1属于nl型矮秆,激素检测表明,矮秆性状与赤霉素和油菜素内酯无关。遗传分析显示,突变性状受单一隐性核基因控制。利用dtl1与籼稻品种Taichung Native 1杂交构建F2群体,将该突变基因DTL1定位于水稻第10染色体长臂2个SSR标记RM25923和RM6673之间约70.4 kb区域内,并与InDel标记Z10-29共分离,在该区域预测有13个候选基因,但未见调控水稻株高相关基因的报道,因此,认为DTL1基因是一个新的控制水稻株高的基因。  相似文献   

11.
Dwarf genes have been valuable for improving harvestable yield of several crop plants and may be useful in oilseed Brassica. We evaluated a dwarf gene, dwf2, from Brassica rapa in order to determine its phenotypic effects and genetic characteristics. The dwf2 mutant was insensitive to exogenous GA3 for both plant height and flowering time, suggesting that it is not a mutation in the gibberellin biosynthesis pathway. The dwarf phenotype was controlled by a semidominant allele at a single locus. Near-isogenic lines that were homozygous or heterozygous for dwf2 had 47.4% or 30.0% reduction in plant height, respectively, compared to the tall wild-type line, and the reduction was due to reduced internode length and number of nodes. The dwf2 homozygous and heterozygous lines had the same or significantly higher numbers of primary branches than the wild-type line, but did not differ in flowering time. The DWF2 gene was mapped to the bottom of linkage group R6, in a region having homology to the top of Arabidopsis thaliana chromosome 2. The map position of DWF2 in comparison to markers in A. thaliana suggests it is a homolog of RGA (repressor of ga1-3), which is a homolog of the wheat Green Revolution gene. This dwarf gene could be used to gain more insight on the gibberellin pathway and to reduce lodging problems in hybrid oilseed Brassica cultivars.Communicated by J.S. Heslop-Harrison  相似文献   

12.
Based on its compact habit, Micro-Tom, a dwarf cultivar of tomato (Solanum lycopersicum L.), has been proposed as a preferred variety to carry out molecular research in tomato. This cultivar, however, is poorly characterized. It is shown here that Micro-Tom has mutations in the SELF-PRUNING (SP) and DWARF (D) genes. In addition to this, it is also shown that Micro-Tom harbours at least two independently segregating resistance loci to the plant pathogen Cladosporium fulvum. The presence of the self-pruning mutation in Micro-Tom, that generates a determinate phenotype, was confirmed by crossing and sequence analysis. It was also found that Micro-Tom has a mutation in the DWARF gene (d) that leads to mis-splicing and production of at least two shorter mRNAs. The d mutation is predicted to generate truncated DWARF protein. The d sequence defect co-segregates with dark-green and rugose leaves, characteristics of brassinosteroid biosynthesis mutants. Micro-Tom also carries at least another mutation producing internode length reduction that affects plant height but not active gibberellin (GA) levels, which were similar in dwarf and tall Micro-TomxSeverianin segregants. GAs and brassinosteroids act synergistically in Micro-Tom, and the response to GA depends on brassinosteroids because the elongation of internodes was at least six times higher when GA(3) was applied simultaneously with brassinolide. A novel variety, Micro-0 that is fully susceptible to C. fulvum and almost as dwarf as Micro-Tom, has been generated from the cross of Cf0xMicro-Tom. This line represents a valuable resource for future analysis of Cf resistance genes through breeding or transformation.  相似文献   

13.
14.
Plant stature is one important factor that affects the productivity of peach orchards. However, little is known about the molecular mechanism(s) underlying the dwarf phenotype of peach tree. Here, we report a dwarfing mechanism in the peach cv. FenHuaShouXingTao (FHSXT). The dwarf phenotype of ‘FHSXT’ was caused by shorter cell length compared to the standard cv. QiuMiHong (QMH). ‘FHSXT’ contained higher endogenous GA levels than did ‘QMH’ and did not response to exogenous GA treatment (internode elongation). These results indicated that ‘FHSXT’ is a GA‐insensitive dwarf mutant. A dwarf phenotype‐related single nucleotide mutation in the gibberellic acid receptor GID1 was identified in ‘FHSXT’ (GID1cS191F), which was also cosegregated with dwarf phenotype in 30 tested cultivars. GID1cS191F was unable to interact with the growth‐repressor DELLA1 even in the presence of GA. ‘FHSXT’ accumulated a higher level of DELLA1, the degradation of which is normally induced by its interaction with GID1. The DELLA1 protein level was almost undetectable in ‘QMH’, but not reduced in ‘FHSXT’ after GA3 treatment. Our results suggested that a nonsynonymous single nucleotide mutation in GID1c disrupts its interaction with DELLA1 resulting in a GA‐insensitive dwarf phenotype in peach.  相似文献   

15.
Genetic approaches using Arabidopsis thaliana aimed at the identification of mutations affecting events involved in auxin signalling have usually led to the isolation of auxin-resistant mutants. From a selection screen specifically developed to isolate auxin-hypersensitive mutants, one mutant line was selected for its increased sensitivity to auxin (x 2 to 3) for the root elongation response. The genetic analysis of sax1 (hypersensitive to abscisic acid and auxin) indicated that the mutant phenotype segregates as a single recessive Mendelian locus, mapping to the lower arm of chromosome 1. Sax1 seedlings grown in vitro showed a short curled primary root and small, round, dark-green cotyledons. In the greenhouse, adult sax1 plants were characterized by a dwarf phenotype, delayed development and reduced fertility. Further physiological characterization of sax1 seedlings revealed that the most striking trait was a large increase (x 40) in ABA-sensitivity of root elongation and, to a lesser extent, of ABA-induced stomatal closure; in other respects, hypocotyl elongation was resistant to gibberellins and ethylene. These alterations in hormone sensitivity in sax1 plants co-segregated with the dwarf phenotype suggesting that processes involved in cell elongation are modified. Treatment of mutant seedlings with an exogenous brassinosteroid partially rescued a wild-type size, suggesting that brassinosteroid biosynthesis might be affected in sax1 plants. Wild-type sensitivities to ABA, auxin and gibberellins were also restored in sax1 plants by exogenous application of brassinosteroid, illustrating the pivotal importance of the BR-related SAX1 gene.  相似文献   

16.
The semidominant gibberellin-insensitive (gai) mutant of Arabidopsis thaliana shows impairment in multiple responses to the plant hormone gibberellin A3, which include effects on seed germination, stem elongation, apical dominance, and rapid flowering in short days. Results presented here show that the gai mutation also interferes with development of fertile flowers in continuous light. Mu-tagenesis of the gai mutant resulted in recovery of 17 independent mutants in which the gibberellin-insensitive phenotype is partially or completely suppressed. Sixteen of the suppressor mutations act semidominantly to restore gibberellin responsiveness. One representative of this class, the gar1 mutation, could not be genetically separated from the gai locus and is proposed to cause inactivation of the gai gene. The exceptional gar2 mutation partially suppresses the gai phenotype, is completely dominant, and is not linked to the gai locus. The gar2 mutation may define a new gene involved in gibberellin signaling. A recessive allele of the spindly (SPY) locus, spy-5, was also found to partially suppress the gai mutant phenotype.  相似文献   

17.
Reid JB 《Plant physiology》1983,72(3):759-763
Internode length in light-grown peas (Pisum sativum L.) is controlled by the interaction of genes occupying at least five major loci, Le, La, Cry, Na, and Lm. The present work shows that the genes at all of the loci examined (Le, Cry, and Na) also exert an effect on internode length in plants grown in complete darkness. Preliminary results using pure lines were verified using either segregating progenies or near isogenic lines. The major cause of the differences was due to a change in the number of cells per internode rather than to an alteration of the cell length. Since the genes occupying at least two of these loci, Le and Na, have been shown to be directly involved with gibberellin metabolism, it appears that gibberellins are not only essential for elongation in the dark but are limiting for elongation in the nana (extremely short, na), dwarf (Na le), and tall (Na Le) phenotypes. These results are supported by the large inhibitory effects of AMO 1618 treatments on stem elongation in dwarf and tall lines grown in the dark and the fact that applied gibberellic acid could overcome this inhibition and greatly promote elongation in a gibberellin-deficient na line. It is clear that the internode length genes, and in particular the alleles at the Le locus, are not acting by simply controlling the sensitivity of the plant to light.  相似文献   

18.
19.
The distribution of endogenous gibberellins in Dwarf-1, a single gene dwarf mutant of Mexico 80-R red beans, was studied. Parallel extraction and fractionation of seeds of this mutant and those of a normal homozygous line followed by thin layer chromatography and bioassays using Rumex obtusifolius, wheat seed endosperm and dwarf bean plants revealed that a stem elongation control factor was contained in the non-acidic fraction from normal, but not from Dwarf-1, seeds. It was concluded that the single gene mutation causes a block either in gibberellin precursor formation or in production of a non-acidic fraction gibberellin-like substance.  相似文献   

20.
Semi-dwarfism is an agronomically important trait in breeding for stable high yields and for resistance to damage by wind and rain (lodging resistance). Many QTLs and genes causing dwarf phenotype have been found in maize. However, because of the yield loss associated with these QTLs and genes, they have been difficult to use in breeding for dwarf stature in maize. Therefore, it is important to find the new dwarfing genes or materials without undesirable characters. The objectives of this study were: (1) to figure out the inheritance of semi-dwarfism in mutants; (2) mapping dwarfing gene or QTL. Maize inbred lines ‘18599’ and ‘DM173’, which is the dwarf mutant derived from the maize inbred line ‘173’ through 60Co-γ ray irradiation. F2 and BC1F1 population were used for genetic analysis. Whole genome resequencing-based technology (QTL-seq) were performed to map dwarfing gene and figured out the SNP markers in predicted region using dwarf bulk and tall bulk from F2 population. Based on the polymorphic SNP markers from QTL-seq, we were fine-mapping the dwarfing gene using F2 population. In F2 population, 398 were dwarf plants and 135 were tall plants. Results of χ2 tests indicated that the ratio of dwarf plants to tall plants was fitted to 3:1 ratio. Furthermore, the χ2 tests of BC1F1 population showed that the ratio was fitted to 1:1 ratio. Based on QTL-seq, the dwarfing gene was located at the region from 111.07 to 124.56 Mb of chromosome 9, and we named it rht-DM. Using traditional QTL mapping with SNP markers, the rht-DM was narrowed down to 400 kb region between SNP-21 and SNP-24. The two SNPs were located at 0.43 and 0.11 cM. Segregation analysis of F2 and BC1F1 indicated that the dwarfing gene was likely a dominant gene. This dwarfing gene was located in the region between 115.02 and 115.42 Mb on chromosome 9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号