首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Rats were fasted or fasted and refed simple purified diets so the effects of individual carbohydrates or fats could be studied. Freshly isolated hepatocytes from these animals were used to measure both apoE synthesis and mRNA levels so any changes in apoE synthesis that might occur without changes in its mRNA could be detected. Some of these experiments were done with both sexes. Both fasting and fasting and refeeding a 60% glucose fat-free diet significantly increased spoE synthesis. However, cyclic AMP is not likely to rapidly mediate the effect of fasting since dibutyryl cAMP slightly lowered (rather than increased) apoE synthesis and mRNA when injected into rats for 4.5 h. Dietary fat had no effect either in the absence of carbohydrate or when consumption of carbohydrate was constant in pair-fed rats. ApoE mRNA levels remained normal for 4 days in primary hepatocytes cultured in medium that had only amino acids as an energy source. Added hormones or fructose had no significant effect. Thus, only fasting and fasting and refeeding glucose were able to significantly change apoE synthesis or mRNA levels. Synthesis of apoE may be regulated to increase when apoE is secreted with very low density lipoprotein or when apoE in secreted high density lipoprotein is needed to acquire cholesteryl esters for the synthesis of bile salts and acids by liver.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
We have demonstrated previously that cultured rat ovarian granulosa cells synthesize and secrete apoE, and this production of apoE is increased by agents that stimulate protein kinase A (cyclic AMP-dependent enzyme) (for example, cholera toxin) and protein kinase C (Ca2+/phospholipid-dependent enzyme) (for example, 12-O-tetradecanoylphorbol-13-acetate, a phorbol ester). In the studies presented in this report, we have examined the effect of changes in cell cholesterol synthesis on the production of apoE by rat ovarian granulosa cells. Mevinolin, an inhibitor of hydroxymethylglutaryl (HMG)-CoA reductase (the rate-limiting enzyme in cholesterol synthesis), and 4,4,10 beta-trimethyl-trans-decal-3 beta-ol, an inhibitor of squalene cyclization, both attenuate the cholera toxin or 12-O-tetradecanoylphorbol-13-acetate stimulation of granulosa cell apoE secretion and apoE mRNA content in a dose-responsive manner. The inhibitory effect of mevinolin is reversed by the concomitant administration of mevalolactone, which provides the cells with the product of the reaction catalyzed by HMG-CoA reductase. Steroidogenesis per se has no effect on apoE production. Aminoglutethimide, which blocks the rate-limiting step in steroidogenesis, has no effect on apoE or apoE mRNA. The data indicate that products of HMG-CoA reductase (isoprenes, cholesterol and/or cholesterol metabolites) are required along with stimulators of protein kinases A and C, to regulate ovarian granulosa cell apoE production.  相似文献   

15.
Tamas Balla   《Cell calcium》2009,45(6):527-534
Increased phosphoinositide turnover was first identified as an early signal transduction event initiated by cell surface receptors that were linked to calcium signaling. Subsequently, the generation of inositol 1,4,5-trisphosphate by phosphoinositide-specific phospholipase C enzymes was defined as the major link between inositide turnover and the cytosolic Ca2+ rise in response to external stimulation. However, in the last decades, phosphoinositides have been emerging as major regulatory lipids involved in virtually every membrane-associated signaling process. Phosphoinositides regulate both the activity and the trafficking of almost all ion channels and transporters contributing to the maintenance of the ionic gradients that are essential for the proper functioning of all eukaryotic cells. Here we summarize the various means by which phosphoinositides affect ion channel functions with special emphasis on Ca2+ signaling and outline the principles that govern the highly compartmentalized roles of these regulatory lipids.  相似文献   

16.
In a continued investigation of lecithin cholesterol acyltransferase reaction with micellar discoidal complexes of phosphatidylcholine, cholesterol, and various water soluble apolipoproteins, we prepared complexes containing human apo-E by the cholate dialysis method. These complexes were systematically compared to apo-A-I complexes synthesized under the same reaction conditions. Apo-E complexes (134 A in diameter) were slightly larger than apo-A-I complexes (110 A) but were very similar in terms of their protein and lipid content (2.4:0.10:1.0, egg phosphatidylcholine/cholesterol/apolipoprotein, w/w) and in the percentage of apolipoprotein in alpha-helical structure (72-74%). Concentration and temperature-dependence experiments on the velocity of the lecithin cholesterol acyltransferase reaction revealed differences in apparent Km values and small differences in apparent Vmax but very similar activation energies (18-20 kcal/mol). These observations suggest that differences in lecithin cholesterol acyltransferase activation by apo-A-I and apo-E are primarily a result of different affinities of the enzyme for the particles but that the rate-limiting step of the reaction is comparable for both complexes. Apo-E was found to be 18% as effective as apo-A-I in activating purified human lecithin cholesterol acyltransferase. Addition of free apo-A-I to apo-E complexes resulted in the exchange of bound for free apolipoprotein causing a slight increase in the reactivity with the enzyme when the incubation mixture was assayed. When the unbound apolipoproteins were removed by ultracentrifugation reisolated complexes containing both apo-E and apo-A-I demonstrated an even greater increase in reactivity with the enzyme.  相似文献   

17.
18.
Recent reports from this laboratory indicate that exposure of cholesterol-loaded macrophages to high density lipoprotein 3 (HDL3) stimulates not only cholesterol efflux, but also results in a two- to threefold increase in apoE accumulation in the media (Dory, L., 1989. J. Lipid Res. 30: 809-816). The present experiments demonstrate that the effect of HDL3, and to a lesser extent HDL2, on apoE secretion is specific, concentration-dependent, and may require interaction with the HDL receptor. Very low density lipoproteins (VLDL) and low-density lipoproteins (LDL) fail to specifically stimulate apoE secretion by cholesterol-loaded macrophages. The effect of HLD3 is maximal at 25-50 micrograms/ml (0.26-0.52 microM) and can be totally abolished by mild nitrosylation (with 3 mM tetranitromethane (TNM)). Data are also presented to indicate that the increased rate of apoE secretion in the presence of HDL3 is not due to a "protective" effect of this lipoprotein on possible proteolytic degradation or cellular reuptake of apoE secreted into the media. The stimulatory effect of HDL on apoE secretion can be clearly dissociated from cholesterol efflux; HDL stimulates apoE secretion from oxysterol-treated cells in the absence of measurable cholesterol efflux, while TNM-HDL promotes substantial cholesterol efflux from cholesterol-loaded cells but has no effect on apoE secretion. The kinetics of apoE synthesis and secretion, determined in short-term labeling studies, demonstrate that under all experimental conditions examined a substantial portion of cellular apoE is not secreted. Furthermore, in cholesterol-loaded cells HDL3 increases apoE secretion essentially by diversion of a greater portion of cellular apoE pool for secretion. While HDL3 has no effect on the rate of apoE synthesis, cellular apoE turns over two-fold faster in cells incubated in the presence of HDL3 than in its absence (t 1/2 = 11 +/- 2 and 22 +/- 4 min, respectively), an observation corresponding well with the changes in the rates of apoE secretion under similar conditions. The HDL3-mediated increase in apoE secretion by cholesterol-loaded macrophages suggests another mechanism by which HDL exerts a protective effect in the development of atherosclerosis; increased contribution to the metabolic pool of apoE by peripheral tissues may lead to a more effective clearance of peripheral cholesterol by the liver (reverse cholesterol transport).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号