首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Refined x-ray structure of papain.E-64-c complex at 2.1-A resolution.   总被引:2,自引:0,他引:2  
E-64-c, a synthetic cysteine protease inhibitor designed from E-64, binds to papain through a thioether covalent bond. The x-ray diffraction data for 2.1-A resolution were used to determine the three-dimensional structure of this complex and refined it to R = 0.159. 0.159. In the complex structure, the configurational conversion from S to R took place on the epoxy carbon of E-64-c, implying that the nucleophilic attack of the Cys-25 thiol group occurs at the opposite side of the epoxy oxygen atom. The leucyl and isoamylamide groups of E-64-c were strongly fixed to papain S subsites by specific interactions, including hydrogen bonding to the Gly-66 residue. The carboxyl-terminal anion of E-64-c formed an electrostatic interaction with the protonated His-159 imidazole ring (O-...HN+ = 3.76 A) and consequently prevented the participation of this residue in the hydrolytic charge-relay system. No significant distortion caused by the binding of E-64-c was shown in the secondary structure of papain. It is important to note that inhibitor and substrate have opposite binding modes for the peptide groups. The possible relationship between the binding mode and inhibitory activity is discussed on the basis of the crystal structure of this complex.  相似文献   

2.
Crystal structure of a papain-E-64 complex   总被引:1,自引:0,他引:1  
E-64 [1-[N-[(L-3-trans-carboxyoxirane-2-carbonyl)-L-leucyl] amino]-4-guanidinobutane] is an irreversible inhibitor of many cysteine proteases. A papain-E-64 complex was crystallized at pH 6.3 by using the hanging drop method. Three different crystal forms grew in 3-7 days; the form chosen for structure analysis has space group P212121, with a = 42.91(4) A, b = 102.02(6) A, c = 49.73(2) A, and Z = 4. Diffraction data were measured to 2.4-A resolution, giving 9367 unique reflections. The papain structure was solved by use of the molecular replacement method, and then the inhibitor was located from a difference electron density map and fitted with the aid of a PS330 computer graphics system. The structure of the complex was refined to R = 23.3%. Our analysis shows that a covalent link is formed between the sulfur of the active-site cysteine 25 and the C-2 atom of the inhibitor. Contrary to earlier predictions, the E-64 inhibitor clearly interacts with the S subsites on the enzyme rather than the S' subsites, and papain's histidine 159 imidazole group plays a binding rather than a catalytic role in the inactivation process.  相似文献   

3.
E-64, 1-(L-trans-epoxysuccinylleucylamino)-4-guanidinobutane, is a potent and highly selective irreversible inhibitor of cysteine proteases. The crystal structure of a complex of actinidin and E-64 has been determined at 1.86-A resolution by using the difference Fourier method and refined to an R-factor of 14.5%. The electron density map clearly shows that the C2 atom of the E-64 epoxide ring is covalently bonded to the S atom of the active-site cysteine 25. The charged carboxyl group of E-64 forms four H-bonds with the protein and thus may play an important role in favorably positioning the inhibitor molecule for nucleophilic attack by the active-site thiolate anion. The interaction features between E-64 and actinidin are very similar to those seen in the papain-E-64 complex; however, the amino-4-guanidinobutane group orients differently. The crystals of the actinidin-E-64 complex diffracted much better than the papain-E-64 complex, and consequently the present study provides more precise geometrical information on the binding of the inhibitor. Moreover, this study provides yet another confirmation that the binding of E-64 is at the S subsites and not at the S' subsites as has been previously proposed. The original actinidin structure has been revised using the new cDNA sequence information.  相似文献   

4.
The role of intracellular calcium-dependent proteinase(s) has been investigated in intact rat muscle. When calcium ions were introduced into intact muscle in vitro with ionophore A23187, Z-line loss and concomitant release of alpha-actinin into the medium were observed. The calcium-induced release of alpha-actinin was not diminished in the muscle with in vivo-injection of a thiol protease inhibitor, E-64-c. Intramuscular concentrations of E-64-c were also measured after pulse labeling with [3H]E-64-c followed by subcellular fractionation. Most of the inhibitor was localized in the cytosol, not in the lysosome. Therefore, we conclude that cytosolic as well as lysosomal proteinases in muscle are not inhibited by the in vivo labeling of the protease inhibitor (10 mg/kg).  相似文献   

5.
The catalytic domain of xylanases belonging to glycoside hydrolase family 10 (GH10) can be divided into 22 modules (M1 to M22; Sato, Y., Niimura, Y., Yura, K., and Go, M. (1999) Gene (Amst.) 238, 93-101). Inspection of the crystal structure of a GH10 xylanase from Streptomyces olivaceoviridis E-86 (SoXyn10A) revealed that the catalytic domain of GH10 xylanases can be dissected into two parts, an N-terminal larger region and C-terminal smaller region, by the substrate binding cleft, corresponding to the module border between M14 and M15. It has been suggested that the topology of the substrate binding clefts of GH10 xylanases are not conserved (Charnock, S. J., Spurway, T. D., Xie, H., Beylot, M. H., Virden, R., Warren, R. A. J., Hazlewood, G. P., and Gilbert, H. J. (1998) J. Biol. Chem. 273, 32187-32199). To facilitate a greater understanding of the structure-function relationship of the substrate binding cleft of GH10 xylanases, a chimeric xylanase between SoXyn10A and Xyn10A from Cellulomonas fimi (CfXyn10A) was constructed, and the topology of the hybrid substrate binding cleft established. At the three-dimensional level, SoXyn10A and CfXyn10A appear to possess 5 subsites, with the amino acid residues comprising subsites -3 to +1 being well conserved, although the +2 subsites are quite different. Biochemical analyses of the chimeric enzyme along with SoXyn10A and CfXyn10A indicated that differences in the structure of subsite +2 influence bond cleavage frequencies and the catalytic efficiency of xylooligosaccharide hydrolysis. The hybrid enzyme constructed in this study displays fascinating biochemistry, with an interesting combination of properties from the parent enzymes, resulting in a low production of xylose.  相似文献   

6.
1. L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) at a concentration of 0.5 mM had no effect on the serine proteinases plasma kallikrein and leucocyte elastase or the metalloproteinases thermolysin and clostridial collagenase. In contrast, 10 muM-E-64 rapidly inactivated the cysteine proteinases cathepsins B, H and L and papain (t0.5 = 0.1-17.3s). The streptococcal cysteine proteinase reacted much more slowly, and there was no irreversible inactivation of clostripain. The cysteine-dependent exopeptidase dipeptidyl peptidase I was very slowly inactivated by E-64. 2. the active-site-directed nature of the interaction of cathepsin B and papain with E-64 was established by protection of the enzyme in the presence of the reversible competitive inhibitor leupeptin and by the stereospecificity for inhibition by the L as opposed to the D compound. 3. It was shown that the rapid stoichiometric reaction of the cysteine proteinases related to papain can be used to determine the operational molarity of solutions of the enzymes and thus to calibrate rate assays. 4. The apparent second-order rate constants for the inactivation of human cathepsins B and H and rat cathepsin L by a series of structural analogues of E-64 are reported, and compared with those for some other active-site-directed inhibitors of cysteine proteinases. 5. L-trans-Epoxysuccinyl-leucylamido(3-methyl)butane (Ep-475) was found to inhibit cathepsins B and L more rapidly than E-64. 6. Fumaryl-leucylamido(3-methyl)butane (Dc-11) was 100-fold less reactive than the corresponding epoxide, but was nevertheless about as effective as iodoacetate.  相似文献   

7.
In order to elucidate the substrate specificity of the Sn subsites (n=1-3) of cathepsin B, its crystal structure inhibited by E64c [(+)-(2S,3S)-3-(1-[N-(3-methylbutyl)amino]-leucylcarbonyl)oxirane-2-carboxylic acid] was analyzed by the X-ray diffraction method. Iterative manual rebuilding and convenient conjugate refinement of structure decreased R- and free R-factors to 19.7% and to 23.9%, respectively, where 130 water molecules were included for the refinement using 14,759 independent reflections from 10 to 2.3 A resolution. The epoxy carbonyl carbon of E64c was covalently bonded to the Cys(29) S(gamma) atom and the remaining parts were located at Sn subsites (n=1-3). The substrate specificity of these subsites was characterized based on their interactions with the inhibitor. Base on these structural data, we developed a novel cathepsin B-specific noncovalent-type inhibitor, which may bind to S2'-S3. The molecular design of possessing structural elements of both CA074 and E64c, assisted by energy minimization and molecular dynamics (MD) simulation, may lead to a new lead noncovalent-type inhibitor.  相似文献   

8.
Several new cysteine proteases of the papain family have been discovered in the past few years. To help in the assignment of physiological roles and in the design of specific inhibitors, a clear picture of the specificities of these enzymes is needed. One of these novel enzymes, cathepsin X, displays a unique specificity, cleaving single amino acid residues at the C-terminus of substrates very efficiently. In this study, the carboxypeptidase activities and substrate specificity of cathepsins X and B have been investigated in detail and compared. Using quenched fluorogenic substrates and HPLC measurements, it was shown that cathepsin X preferentially cleaves substrates through a monopeptidyl carboxypeptidase pathway, while cathepsin B displays a preference for the dipeptidyl pathway. The preference for one or the other pathway is about the same for both enzymes, i.e., approximately 2 orders of magnitude, a result supported by molecular modeling of enzyme-substrate complexes. Cleavage of a C-terminal dipeptide of a substrate by cathepsin X can become more important under conditions that preclude efficient monopeptidyl carboxypeptidase activity, e.g., nonoptimal interactions in subsites S(2)-S(1). These results confirm that cathepsin X is designed to function as a monopeptidyl carboxypeptidase. Contrary to a recent report [Klemencic, I., et al. (2000) Eur. J. Biochem. 267, 5404-5412], it is shown that cathepsins X and B do not share similar activity profiles, and that reagents are available to clearly distinguish the two enzymes. In particular, CA074 was found to inactivate cathepsin B at least 34000-fold more efficiently than cathepsin X. The insights obtained from this and previous studies have been used to produce an inhibitor designed to exploit the unique structural features responsible for the carboxypeptidase activity of cathepsin X. Although of moderate potency, this E-64 derivative is the first reported example of a cathepsin X-specific inhibitor.  相似文献   

9.
Potent inhibitors of human cysteine proteases of the papain family have been made and assayed versus a number of relevant family members. We describe the synthesis of peptide alpha-ketoheterocyclic inhibitors that occupy binding subsites S1'-S3 of the cysteine protease substrate recognition cleft and that form a reversible covalent bond with the Cys 25 nucleophile. X-ray crystal structures of cathepsin K both unbound and complexed with inhibitors provide detailed information on protease/inhibitor interactions and suggestions for the design of tight-binding, selective molecules.  相似文献   

10.
Schechter I  Ziv E 《Biochemistry》2006,45(49):14567-14572
Competitive inhibitors can activate proteases (papain, trypsin, and cathepsin S) to catalyze the synthesis of peptide bonds and accelerate the hydrolysis of poor substrates (from 1 to 99%). Reaction mixtures contained intermediate molecules that were formed by the coupling of the inhibitor with the poor substrate. This and other findings suggest the following chain of events. Part of the binding energy of formation of the enzyme-inhibitor complex was used to activate the inhibitor, i.e., to form acyl-enzyme species with a high-energy bond (e.g., a thioester bond in the case of papain) required for coupling the inhibitor with the substrate to form the intermediate molecule. The latter was subjected to successive reactions which led to a stepwise degradation of the substrate, as well as to the regeneration of the inhibitor. One mole of the inhibitor could catalyze rapid hydrolysis of at least 53 mol of substrate. The intermediate molecules were the species undergoing rapid hydrolysis. Therefore, 1 mol of inhibitor was involved in the synthesis of 53 mol of intermediate molecules; i.e., the inhibitor functioned as a cofactor that catalyzed the synthesis of peptides. Thus, the binding energy of formation of the enzyme-inhibitor complex can be utilized to catalyze the synthesis of peptide bonds in the absence of an exogenous energy source (e.g., ATP).  相似文献   

11.
D Grobelny  R E Galardy 《Biochemistry》1986,25(5):1072-1078
Three classes of carbonyl-containing substrate analogues and partial substrate analogues have been tested for their ability to inhibit angiotensin converting enzyme. (4-Oxobutanoyl)-L-proline is proposed to occupy the S1' and S2' subsites on the enzyme, thus locating its aldehyde carbonyl group at the position of the active site zinc atom. This aldehyde is 70% hydrated in aqueous solution and could mimic a tetrahedral intermediate occurring during enzyme-catalyzed substrate hydrolysis, but its Ki is only 760 microM. Carbobenzoxy-L-isoleucyl-L-histidyl-L-prolyl-L-phenylalaninal is proposed to occupy the S1 through S4 subsites on the other side of the zinc atom. Its weak Ki of 60 microM is nearly equipotent to its parent peptide terminating in phenylalanine. However, ketoace, (5RS)-(5-benzamido-4-oxo-6-phenylhexanoyl)-L-proline [Almquist, R.G., Chao, W.R., Ellis, M.E., & Johnson, H.L. (1980) J. Med. Chem. 23, 1392-1398], one of the third class of inhibitors proposed to occupy subsites S1 through S2' on both sides of the zinc atom, has a Ki of 0.0006 microM under our assay conditions, orders of magnitude more potent than its parent peptide. The carbonyl carbon of ketoace is less than 3% hydrated in aqueous solution as determined by carbon-13 nuclear magnetic resonance spectroscopy. If the hydrate is the species bound to converting enzyme, its Ki must be less than 18 pM. Ketoace is a slow-binding inhibitor of converting enzyme, but its overall Ki is dependent on its concentration and therefore prevents calculation of kinetic constants for slow binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Crystal structure of human cathepsin S.   总被引:2,自引:1,他引:1       下载免费PDF全文
We have determined the 2.5 A structure (Rcryst = 20.5%, Rfree = 28.5%) of a complex between human cathepsin S and the potent, irreversible inhibitor 4-morpholinecarbonyl-Phe-hPhe-vinyl sulfone-phenyl. Noncrystallographic symmetry averaging and other density modification techniques were used to improve electron density maps which were nonoptimal due to systematically incomplete data. Methods that reduce the number of parameters were implemented for refinement. The refined structure shows cathepsin S to be similar to related cysteine proteases such as papain and cathepsins K and L. As expected, the covalently-bound inhibitor is attached to the enzyme at Cys 25, and enzyme binding subsites S3-S1' are occupied by the respective inhibitor substituents. A somewhat larger S2 pocket than what is found in similar enzymes is consistent with the broader specificity of cathepsin S at this site, while Lys 61 in the S3 site may offer opportunities for selective inhibition of this enzyme. The presence of Arg 137 in the S1' pocket, and proximal to Cys 25 may have implications not only for substrate specificity C-terminal to the scissile bond, but also for catalysis.  相似文献   

13.
Oral inoculation of human rotavirus MO strain (serotype 3) into 5-day-old BALB/c mice caused gastroenteritis characterized by diarrhea (90% on the average, on day 2). Using this animal model, preventive effect of antiviral agents on the development of rotavirus-induced diarrhea was examined. The infectivity of human rotavirus was enhanced by treatment with protease in vitro. A cysteine protease inhibitor, E-64-c, was given orally at 12 hr and 24 hr after MO infection. Oral administration of 0.3 mg of E-64-c decreased the diarrhea ratio to 17.5% on day 2 and to 10% on day 3. Oral administration of 0.15 mg of cysteine protease inhibitor, ovocystatin, completely prevented the diarrhea on day 2. Serine protease inhibitor, aprotinin (0.15 mg x 2), also prevented the diarrhea on day 2 to 14.3%. These protease inhibitors were nontoxic in vitro and to suckling mice. The histopathological changes in the small intestine due to infection recovered 2 days after MO infection in mice treated with E-64-c and ovocystatin. These results suggest that protease inhibitors are protective agents for human rotavirus infection by inhibiting proteases required for viral replication.  相似文献   

14.
Ingensin, a fatty acid-activated serine proteinase from rat liver cytosol   总被引:2,自引:0,他引:2  
The enzyme responsible for the succinylleucylleucylvalyltyrosine methylcoumarylamide- (SLLVT-) degrading activity was purified from the postmitochondrial supernatant of rat liver (Yamamoto, T., Nojima, M., Ishiura, S. and Sugita, H. (1986) Biochim. Biophys. Acta 882, 297-304). The enzyme, named ingensin, was activated by saturated fatty acids, especially myristic acid, as well as by unsaturated linoleic acid and arachidonic acid. Although 2-mercaptoethanol activated ingensin 2-fold and p-chloromercuribenzoate and HgCl2 completely inhibited its peptide-hydrolyzing activity, the enzyme is activated by the addition of a thiol-blocking reagent, monoiodoacetic acid. Ingensin was also inhibited by a specific serine proteinase inhibitor, diisopropyl fluorophosphate, but not by a specific cysteine proteinase inhibitor, E-64-c. These results suggest that the enzyme is a serine proteinase with an active thiol group(s) near the active site. We have found that the addition of glycerol and nordihydroguaiaretic acid lowered the extent of its activation by fatty acids as well as its intrinsic peptide-hydrolyzing activity.  相似文献   

15.
Based on the crystal structure of the papain-E-64-c complex, 3-dimensional binding modes of a series of epoxysuccinyl amino acid derivatives to the papain active site have been constructed and the structure-inhibitory activity relationship has been analyzed using the accessible surface area and nonbonded energy parameters. The result indicates the importance of the hydrophobic interaction between the amino acid side chain of the inhibitor and the papain Val-157 residue for revealing the potent inhibitory activity.  相似文献   

16.
Memapsin 2 is the protease known as beta-secretase whose action on beta-amyloid precursor protein leads to the production of the beta-amyloid (Abeta) peptide. Since the accumulation of Abeta in the brain is a key event in the pathogenesis of Alzheimer's disease, memapsin 2 is an important target for the design of inhibitory drugs. Here we describe the residue preference for the subsites of memapsin 2. The relative k(cat)/K(M) values of residues in each of the eight subsites were determined by the relative initial cleavage rates of substrate mixtures as quantified by MALDI-TOF mass spectrometry. We found that each subsite can accommodate multiple residues. The S(1) subsite is the most stringent, preferring residues in the order of Leu > Phe > Met > Tyr. The preferences of other subsites are the following: S(2), Asp > Asn > Met; S(3), Ile > Val > Leu; S(4), Glu > Gln > Asp; S(1)', Met > Glu > Gln > Ala; S(2)', Val > Ile > Ala; S(3)', Leu > Trp > Ala; S(4)', Asp > Glu > Trp. In general, S subsites are more specific than the S' subsites. A peptide comprising the eight most favored residues (Glu-Ile-Asp-Leu-Met-Val-Leu-Asp) was found to be hydrolyzed with the highest k(cat)/K(M) value so far observed for memapsin 2. Residue preferences at four subsites were also studied by binding of memapsin 2 to a combinatorial inhibitor library. From 10 tight binding inhibitors, the consensus preferences were as follows: S(2), Asp and Glu; S(3), Leu and Ile; S(2)', Val; and S(3)', Glu and Gln. An inhibitor, OM00-3, Glu-Leu-Asp-LeuAla-Val-Glu-Phe (where the asterisk represents the hydroxyethylene tansition-state isostere), designed from the consensus residues, was found to be the most potent inhibitor of memapsin 2 so far reported (K(i) of 3.1 x 10(-10) M). A molecular model of OM00-3 binding to memapsin 2 revealed critical improvement of the interactions between inhibitor side chains with enzyme over a previous inhibitor, OM99-2 [Ghosh, A. K., et al. (2000) J. Am. Chem. Soc. 14, 3522-3523].  相似文献   

17.
Prolyl endopeptidase [EC 3.4.21.26] was purified to homogeneity from the culture filtrate of Agaricus bisporus by a procedure that comprised ammonium sulfate fractionation, anion-exchange chromatographies on DEAE-Toyopearl and DEAE-Sephadex, hydroxylapatite chromatography, and high-performance liquid chromatography (HPLC) on a TSKgel G 2000 SW column. The overall activity recovery was 8.6%. The enzyme was most active at or around pH 7.5 and was stable in the range of pH 5-9 when checked with Z-Gly-Pro-beta-naphthylamide as a substrate. The isoelectric point of the enzyme was about 4.8. The enzyme was a monomeric protein of molecular weight 78,000 +/- 2,000 as judged by gel permeation chromatography on Sephadex G-150 and electrophoresis on sodium dodecyl sulfate (SDS) polyacrylamide gel. The enzyme hydrolyzed Pro-X bonds and at least five subsites (S3, S2, S1, S1', and S2') were found to be involved in enzyme-substrate binding. Among them, S2, S1, and S1' subsites of the enzyme showed high stereospecificity. The enzyme was strongly inhibited by diisopropylfluorophosphate (DFP), Z-Gly-Pro-CH2Cl, Z-Pro-prolinal, Z-Pro-pyrrolidine, Z-Thiopro-pyrrolidine, Z-Pro-thiazolidine, Z-Thioprothiazolidine, and p-chloromercuribenzoate (PCMB), while it was not inhibited by phenyl-methylsulfonyl fluoride (PMSF), E-64, iodoacetamide, or metal chelators. Although the A. bisporus enzyme showed no immunological cross reaction with anti-bovine prolyl endopeptidase antiserum, the other characteristics were quite similar to those of mammalian and plant enzymes.  相似文献   

18.
Intraperitoneal administration of N-(L-trans-propylcarbamoyloxirane-2-carbonyl)-L-isoleucyl-L-prolin e (CA-074) to rats at a dose of 4 mg/100 g greatly inhibited cathepsin-B activity in both liver and kidney for at least 4 h. Its inhibitory effect was selective for cathepsin-B activity in the liver but not in the kidney. The effects of selective inhibition of cathepsin-B activity by CA-074 treatment, and general inhibition of cysteine proteinases by N-(L-3-trans-carboxyoxirane-2-carbonyl)-L-leucyl-3-methylbutylamid e (E-64-c) on the degradation of fluorescein isothiocyanate (FITC)-labeled asialofetuin in liver lysosomes, were examined in vivo. Undegraded or partially degraded FITC-labeled asialofetuin and its FITC-labeled degradation products were both found in the lysosomes and were easily separated by Sephadex G-25' column chromatography. The FITC-labeled degradation products were mainly lysine with an FITC-labeled epsilon-amino group. Accumulation of undegraded or partially degraded FITC-labeled asialofetuin in the lysosomes was marked after E-64-c treatment, but slight after CA-074 treatment. Under the marked inhibition of general lysosomal cysteine-proteinase activity by E-64-c or marked selective inhibition of cathepsin-B activity by CA-074 in vitro, degradation of FITC-labeled asialofetuin by disrupted lysosomes was analyzed on the basis of measurement of FITC-labeled degradation products by Sephadex G-25 column chromatography. It was suppressed markedly but incompletely by E-64-c as well as by CA-074, but more weakly than by E-64-c. These results shows that E-64-sensitive cysteine proteinases are important in lysosomal protein degradation, but cathepsin B has only a role in part and that an E-64-resistant proteinase(s) may also be important.  相似文献   

19.
The dissociation constants for reversible covalent binding of twelve peptide nitrile inhibitors to the active site of papain have been measured by means of fluorescence titration. The binding constants generally parallel the kinetic specificity constants (kcat/Km) for related papain substrates, supporting earlier suggestions that peptide nitriles behave as transition state analog inhibitors of papain. In ten cases the temperature dependence of binding was analyzed to determine the enthalpic and entropic contributions to the binding energy. A compensation plot of delta H vs. T delta S resulted in two parallel lines, one for 'specific' nitriles (i.e., N-Ac-L-aa-NHCH2CN; aa = Phe, Leu, Met) and the other for 'non-specific' nitriles (e.g., N-Ac-D-Phe-NHCH2CN, PhCH2CH2CONHCH2CN hippurylnitrile, etc.). For both specific and nonspecific nitriles representing an 1800-fold range of Kd values (0.27 microM-490 microM), the solvent deuterium isotope effect on binding (Kd(H2O)/Kd(D2O) = DKd) was very close to 2.0. This isotope effect could be accounted for entirely by the simple protonic change which occurs upon the reversible addition of the active site sulfhydryl of papain to the nitrile group of the peptide derivative to form a covalent thioimidate linkage. In contrast, six closely related non-nitrile ligands containing identical peptide side chains but having C-terminal groups incapable of binding covalently to papain had unmeasureably high dissociation constants. Collectively, these results indicate that strong binding of peptide nitrile substrate analogs to papain requires a combination of (1) hydrophobic interaction (especially at the P2 position), (2) specific intermolecular hydrogen bonding and (3) covalent interaction of the nitrile with the active site sulfhydryl group.  相似文献   

20.
Cyclodextrin glycosyltransferases (CGTase) (EC 2.4.1.19) are extracellular bacterial enzymes that generate cyclodextrins from starch. All known CGTases produce mixtures of alpha, beta, and gamma-cyclodextrins. A maltononaose inhibitor bound to the active site of the CGTase from Bacillus circulans strain 251 revealed sugar binding subsites, distant from the catalytic residues, which have been proposed to be involved in the cyclodextrin size specificity of these enzymes. To probe the importance of these distant substrate binding subsites for the alpha, beta, and gamma-cyclodextrin product ratios of the various CGTases, we have constructed three single and one double mutant, Y89G, Y89D, S146P and Y89D/S146P, using site-directed mutagenesis. The mutations affected the cyclization, coupling; disproportionation and hydrolyzing reactions of the enzyme. The double mutant Y89D/S146P showed a twofold increase in the production of alpha-cyclodextrin from starch. This mutant protein was crystallized and its X-ray structure, in a complex with a maltohexaose inhibitor, was determined at 2.4 A resolution. The bound maltohexaose molecule displayed a binding different from the maltononaose inhibitor, allowing rationalization of the observed change in product specificity. Hydrogen bonds (S146) and hydrophobic contacts (Y89) appear to contribute strongly to the size of cyclodextrin products formed and thus to CGTase product specificity. Changes in sugar binding subsites -3 and -7 thus result in mutant proteins with changed cyclodextrin production specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号