首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied inactivation of four strains each of Escherichia coli and Listeria innocua in milk by the combined use of high hydrostatic pressure and the lactoperoxidase-thiocyanate-hydrogen peroxide system as a potential mild food preservation method. The lactoperoxidase system alone exerted a bacteriostatic effect on both species for at least 24 h at room temperature, but none of the strains was inactivated. Upon high-pressure treatment in the presence of the lactoperoxidase system, different results were obtained for E. coli and L. innocua. For none of the E. coli strains did the lactoperoxidase system increase the inactivation compared to a treatment with high pressure alone. However, a strong synergistic interaction of both treatments was observed for L. innocua. Inactivation exceeding 7 decades was achieved for all strains with a mild treatment (400 MPa, 15 min, 20 degrees C), which in the absence of the lactoperoxidase system caused only 2 to 5 decades of inactivation depending on the strain. Milk as a substrate was found to have a considerable effect protecting E. coli and L. innocua against pressure inactivation and reducing the effectiveness of the lactoperoxidase system under pressure on L. innocua. Time course experiments showed that L. innocua counts continued to decrease in the first hours after pressure treatment in the presence of the lactoperoxidase system. E. coli counts remained constant for at least 24 h, except after treatment at the highest pressure level (600 MPa, 15 min, 20 degrees C), in which case, in the presence of the lactoperoxidase system, a transient decrease was observed, indicating sublethal injury rather than true inactivation.  相似文献   

2.
Using leaderless alkaline phosphatase as a probe, it was demonstrated that pressure treatment induces endogenous intracellular oxidative stress in Escherichia coli MG1655. In stationary-phase cells, this oxidative stress increased with the applied pressure at least up to 400 MPa, which is well beyond the pressure at which the cells started to become inactivated (200 MPa). In exponential-phase cells, in contrast, oxidative stress increased with pressure treatment up to 150 MPa and then decreased again, together with the cell counts. Anaerobic incubation after pressure treatment significantly supported the recovery of MG1655, while mutants with increased intrinsic sensitivity toward oxidative stress (katE, katF, oxyR, sodAB, and soxS) were found to be more pressure sensitive than wild-type MG1655. Furthermore, mild pressure treatment strongly sensitized E. coli toward t-butylhydroperoxide and the superoxide generator plumbagin. Finally, previously described pressure-resistant mutants of E. coli MG1655 displayed enhanced resistance toward plumbagin. In one of these mutants, the induction of endogenous oxidative stress upon high hydrostatic pressure treatment was also investigated and found to be much lower than in MG1655. These results suggest that, at least under some conditions, the inactivation of E. coli by high hydrostatic pressure treatment is the consequence of a suicide mechanism involving the induction of an endogenous oxidative burst.  相似文献   

3.
The aim of this study was to examine the effect of pressure treatment at 193 MPa and −20 °C on membrane damage, changes in activity of membrane-bound ATPases and degradation of nucleic acids. The experiments were carried out with three Escherichia coli strains, in the exponential and stationary phases of growth, and differing in sensitivity to pressure. All E. coli strains subjected to pressure in the exponential phase of growth were inactivated by 6 log cycles, independently of the strain, which was accompanied by a total loss of ability to plasmolyse, an increase in irreversible membrane permeability to PI, and a reduction of cellular ATP by more than 80%. After pressure treatment of stationary phase cells, the relationship between the inactivation level and the ability to plasmolyse was not as evident as in the case of exponential phase cells. Pressure treatment of two strains of E. coli K-12 and Ec160/59 in the stationary phase that decreased viability by no more than one log cycle led only to reversible permeabilization of bacterial membranes, while irreversible permeabilization was observed in the pressure sensitive E. coli IBA72 strain phase that was inactivated by 4.6 log cycles. The reduction of ATP and changes in ATPase activity after pressure treatment of tested E. coli strains in the stationary phase of growth depended on the stage of inactivation of the particular strain. Electrophoretic analysis showed degradation of RNA isolated after pressure treatment from cells of all E. coli strains tested in the exponential phase of growth. The changes of RNA induced by pressure were not visible in the case of cells in the stationary phase. The degradation of DNA isolated from pressure treated E. coli strains from the exponential as well as from the stationary phase of growth was not observed.  相似文献   

4.
The inactivation of Listeria innocua BGA 3532 at subzero temperatures and pressures up to 400 MPa in buffer solution was studied to examine the impact of high-pressure treatments on bacteria in frozen matrices. The state of aggregation of water was taken into account. The inactivation was progressing rapidly during pressure holding under liquid conditions, whereas in the ice phases, extended pressure holding times had comparatively little effect. The transient phase change of ice I to other ice polymorphs (ice II or ice III) during pressure cycles above 200 MPa resulted in an inactivation of about 3 log cycles, probably due to the mechanical stress associated with the phase transition. This effect was independent of the applied pressure holding time. Flow cytometric analyses supported the assumption of different mechanisms of inactivation of L. innocua in the liquid phase and ice I (large fraction of sublethally damaged cells due to pressure inactivation) in contrast to cells subjected to ice I-to-ice III phase transitions (complete inactivation due to cell rupture). Possible applications of high-pressure-induced phase transitions include cell disintegration for the recovery of intracellular components and inactivation of microorganisms in frozen food.  相似文献   

5.
The objective of this study was to determine the effect of high pressure (HP) on the inactivation of microbial contaminants in Cheddar cheese (Escherichia coli K-12, Staphylococcus aureus ATCC 6538, and Penicillium roqueforti IMI 297987). Initially, cheese slurries inoculated with E. coli, S. aureus, and P. roqueforti were used as a convenient means to define the effects of a range of pressures and temperatures on the viability of these microorganisms. Cheese slurries were subjected to pressures of 50 to 800 MPa for 20 min at temperatures of 10, 20, and 30°C. At 400 MPa, the viability of P. roqueforti in cheese slurry decreased by >2-log-unit cycles at 10°C and by 6-log-unit cycles at temperatures of 20 and 30°C. S. aureus and E. coli were not detected after HP treatments in cheese slurry of >600 MPa at 20°C and >400 MPa at 30°C, respectively. In addition to cell death, the presence of sublethally injured cells in HP-treated slurries was demonstrated by differential plating using nonselective agar incorporating salt or glucose. Kinetic experiments of HP inactivation demonstrated that increasing the pressure from 300 to 400 MPa resulted in a higher degree of inactivation than increasing the pressurization time from 0 to 60 min, indicating a greater antimicrobial impact of pressure. Selected conditions were subsequently tested on Cheddar cheese by adding the isolates to cheese milk and pressure treating the resultant cheeses at 100 to 500 MPa for 20 min at 20°C. The relative sensitivities of the isolates to HP in Cheddar cheese were similar to those observed in the cheese slurry, i.e., P. roqueforti was more sensitive than E. coli, which was more sensitive than S. aureus. The organisms were more sensitive to pressure in cheese than slurry, especially with E. coli. On comparison of the sensitivities of the microorganisms in a pH 5.3 phosphate buffer, cheese slurry, and Cheddar cheese, greatest sensitivity to HP was shown in the pH 5.3 phosphate buffer by S. aureus and P. roqueforti while greatest sensitivity to HP by E. coli was exhibited in Cheddar cheese. Therefore, the medium in which the microorganisms are treated is an important determinant of the level of inactivation observed.  相似文献   

6.
Hydrostatic pressure may affect the intracellular pH of microorganisms by (i) enhancing the dissociation of weak organic acids and (ii) increasing the permeability of the cytoplasmic membrane and inactivation of enzymes required for pH homeostasis. The internal pHs of Lactococcus lactis and Lactobacillus plantarum during and after pressure treatment at 200 and 300 MPa and at pH values ranging from 4.0 to 6.5 were determined. Pressure treatment at 200 MPa for up to 20 min did not reduce the viability of either strain at pH 6.5. Pressure treatment at pH 6.5 and 300 MPa reduced viable cell counts of Lactococcus lactis and Lactobacillus plantarum by 5 log after 20 and 120 min, respectively. Pressure inactivation was faster at pH 5 or 4. At ambient pressure, both strains maintained a transmembrane pH gradient of 1 pH unit at neutral pH and about 2 pH units at pH 4.0. During pressure treatment at 200 and 300 MPa, the internal pH of L. lactis was decreased to the value of the extracellular pH during compression. The same result was observed during treatment of Lactobacillus plantarum at 300 MPa. Lactobacillus plantarum was unable to restore the internal pH after a compression-decompression cycle at 300 MPa and pH 6.5. Lactococcus lactis lost the ability to restore its internal pH after 20 and 4 min of pressure treatment at 200 and 300 MPa, respectively. As a consequence, pressure-mediated stress reactions and cell death may be considered secondary effects promoted by pH and other environmental conditions.  相似文献   

7.
The effect of high-pressure (HP) treatments combined with bacteriocins of lactic acid bacteria (LAB) produced in situ on the survival of Escherichia coli O157:H7 in cheese was investigated. Cheeses were manufactured from raw milk inoculated with E. coli O157:H7 at approximately 105 CFU/ml. Seven different bacteriocin-producing LAB were added at approximately 106 CFU/ml as adjuncts to the starter. Cheeses were pressurized on day 2 or 50 at 300 MPa for 10 min or 500 MPa for 5 min, at 10°C in both cases. After 60 days, E. coli O157:H7 counts in cheeses manufactured without bacteriocin-producing LAB and not pressurized were 5.1 log CFU/g. A higher inactivation of E. coli O157:H7 was achieved in cheeses without bacteriocin-producing LAB when 300 MPa was applied on day 50 (3.8-log-unit reduction) than if applied on day 2 (1.3-log-unit reduction). Application of 500 MPa eliminated E. coli O157:H7 in 60-day-old cheeses. Cheeses made with bacteriocin-producing LAB and not pressurized showed a slight reduction of the pathogen. Pressurization at 300 MPa on day 2 and addition of lacticin 481-, nisin A-, bacteriocin TAB 57-, or enterocin AS-48-producing LAB were synergistic and reduced E. coli O157:H7 counts to levels below 2 log units in 60-day-old cheeses. Pressurization at 300 MPa on day 50 and addition of nisin A-, bacteriocin TAB 57-, enterocin I-, or enterocin AS-48-producing LAB completely inactivated E. coli O157:H7 in 60-day-old cheeses. The application of reduced pressures combined with bacteriocin-producing LAB is a feasible procedure to improve cheese safety.  相似文献   

8.
The effects of pressure on cultures of Lactobacillus plantarum were characterized by determination of the viability and activity of HorA, an ATP-binding cassette multidrug resistance transporter. Changes in the membrane composition of L. plantarum induced by different growth temperatures were determined. Furthermore, the effect of the growth temperature of a culture on pressure inactivation at 200 MPa was determined. Cells were characterized by plate counts on selective and nonselective agar after pressure treatment, and HorA activity was measured by ethidium bromide efflux. Fourier transform-infrared spectroscopy and Laurdan fluorescence spectroscopy provided information about the thermodynamic phase state of the cytoplasmic membrane during pressure treatment. A pressure-temperature diagram for cell membranes was established. Cells grown at 37°C and pressure treated at 15°C lost >99% of HorA activity and viable cell counts within 36 and 120 min, respectively. The membranes of these cells were in the gel phase region at ambient pressure. In contrast, cells grown at 15°C and pressure treated at 37°C lost >99% of HorA activity and viable cell counts within 4 and 8 min, respectively. The membranes of these cells were in the liquid crystalline phase region at ambient pressure. The kinetic analysis of inactivation of L. plantarum provided further evidence that inactivation of HorA is a crucial step during pressure-induced cell death. Comparison of the biological findings and the membrane state during pressure treatment led to the conclusion that the inactivation of cells and membrane enzymes strongly depends on the thermodynamic properties of the membrane. Pressure treatment of cells with a liquid crystalline membrane at 0.1 MPa resulted in HorA inactivation and cell death more rapid than those of cells with a gel phase membrane at 0.1 MPa.  相似文献   

9.
The goal of this study was to follow ceftiofur-treated and untreated cattle in a normally functioning dairy to examine enteric Escherichia coli for changes in antibiotic resistance profiles and genetic diversity. Prior to treatment, all of the bacteria cultured from the cows were susceptible to ceftiofur. Ceftiofur-resistant E. coli was only isolated from treated cows during and immediately following the cessation of treatment, and the 12 blaCMY-2-positive isolates clustered into two genetic groups. E. coli bacterial counts dropped significantly in the treated animals (P < 0.027), reflecting a disappearance of the antibiotic-susceptible strains. The resistant bacterial population, however, did not increase in quantity within the treated cows; levels stayed low and were overtaken by a returning susceptible population. There was no difference in the genetic diversities of the E. coli between the treated and untreated cows prior to ceftiofur administration or after the susceptible population of E. coli returned in the treated cows. A cluster analysis of antibiotic susceptibility profiles resulted in six clusters, two of which were multidrug resistant and were comprised solely of isolates from the treated cows immediately following treatment. The antibiotic treatment provided a window to detect the presence of ceftiofur-resistant E. coli but did not appear to cause its emergence or result in its amplification. The finding of resistant isolates following antibiotic treatment is not sufficient to estimate the strength of selection pressure nor is it sufficient to demonstrate a causal link between antibiotic use and the emergence or amplification of resistance.  相似文献   

10.
Since high hydrostatic pressure is becoming increasingly important in modern food preservation, its potential effects on microorganisms need to be thoroughly investigated. In this context, mild pressures (<200 MPa) have recently been shown to induce an SOS response in Escherichia coli MG1655. Due to this response, we observed a RecA- and LexA-dependent induction of lambda prophage upon treating E. coli lysogens with sublethal pressures. In this report, we extend this observation to lambdoid Shiga toxin (Stx)-converting bacteriophages in MG1655, which constitute an important virulence trait in Stx-producing E. coli strains (STEC). The window of pressures capable of inducing Stx phages correlated well with the window of bacterial survival. When pressure treatments were conducted in whole milk, which is known to promote bacterial survival, Stx phage induction could be observed at up to 250 MPa in E. coli MG1655 and at up to 300 MPa in a pressure-resistant mutant of this strain. In addition, we found that the intrinsic pressure resistance of two types of Stx phages was very different, with one type surviving relatively well treatments of up to 400 MPa for 15 min at 20°C. Interestingly, and in contrast to UV irradiation or mitomycin C treatment, pressure was not able to induce Stx prophage or an SOS response in several natural Stx-producing STEC isolates.  相似文献   

11.
The enzyme lactoperoxidase is part of the innate immune system in vertebrates and owes its antimicrobial activity to the formation of oxidative reaction products from various substrates. In a previous study, we have reported that, with thiocyanate as a substrate, the lactoperoxidase system elicits a distinct stress response in Escherichia coli MG1655. This response is different from but partly overlapping with the stress responses to hydrogen peroxide and to superoxide. In the current work, we constructed knockouts in 10 lactoperoxidase system-inducible genes to investigate their role in the tolerance of E. coli MG1655 to this antimicrobial system. Five mutations resulted in a slightly increased sensitivity, but one mutation (corA) caused hypersensitivity to the lactoperoxidase system. This hypersensitive phenotype was specific to the lactoperoxidase system, since neither the sensitivity to hydrogen peroxide nor to the superoxide generator plumbagin was affected in the corA mutant. Salmonella enterica serovar Typhimurium corA had a similar phenotype. Although corA encodes an Mg2+ transporter and at least three other inducible open reading frames belonged to the Mg2+ regulon, repression of the Mg stimulon by Mg2+ did not change the lactoperoxidase sensitivity of either the wild-type or corA mutant. Prior exposure to 0.3 mM Ni2+, which is also transported by CorA, strongly sensitized MG1655 but not the corA mutant to the lactoperoxidase system. Furthermore, this Ni2+-dependent sensitization was suppressed by the CorA-specific inhibitor Co(III) hexaammine. These results indicate that CorA affects the lactoperoxidase sensitivity of E. coli by modulating the cytoplasmic concentrations of transition metals that enhance the toxicity of the lactoperoxidase system.  相似文献   

12.
A paper pile filtration technique was used to obtain synchronously dividing populations of E. coli strains B and B/r from cultures in the exponential growth phase. Three generations of highly phased cell division were obtained by rapid pressure filtration which selected approximately 1 per cent of the exponentially growing culture. The sensitivity of E. coli strain B to x-ray and UV inactivation as a function of the cell division cycle was determined on synchronous populations. E. coli strain B showed a sharp decrease in sensitivity to inactivation by both radiations in the middle of the division cycle, and a further decrease near the end of the cycle. The sensitivity of E. coli strain B/r to x-irradiation was also investigated. Only the mid-cycle decrease in sensitivity was found during the division cycle of this strain. It was concluded that the repetition of the observed sensitivity patterns in both strains through the first three cycles after synchronization indicates that the same basic sensitivity patterns are probably also present in the individual cells of an exponential phase culture.  相似文献   

13.
Nisin in combination with ultrahigh-pressure treatment (UHP) showed strong synergistic effects against Lactobacillus plantarum and Escherichia coli at reduced temperatures (<15°C). The strongest inactivation effects were observed when nisin was present during pressure treatment and in the recovery medium. Elimination (>6-log reductions) of L. plantarum was achieved at 10°C with synergistic combinations of 0.5 μg of nisin per ml at 150 MPa and 0.1 μg of nisin per ml at 200 MPa for 10 min. Additive effects of nisin and UHP accounted for only 1.2- and 3.7-log reductions, respectively. Elimination was also achieved for E. coli at 10°C with nisin present at 2 μg/ml, and 10 min of pressure at 200 MPa, whereas the additive effect accounted for only 2.6-log reductions. Slight effects were observed even against the yeast Saccharomyces cerevisiae with nisin present at 5 μg/ml and with 200 MPa of pressure. Combining nisin, UHP, and lowered temperature may allow considerable reduction in time and/or pressure of UHP treatments. Kill can be complete without the frequently encountered survival tails in UHP processing. The slightly enhanced synergistic kill with UHP at reduced temperatures was also observed for other antimicrobials, the synthetic peptides MB21 and histatin 5. The postulated mode of action was that the reduced temperature and the binding of peptides to the membrane increased the efficacy of UHP treatment. The increases in fatty acid saturation or diphosphatidylglycerol content and the lysylphosphatidyl content of the cytoplasm membrane of L. plantarum were correlated with increased susceptibility to UHP and nisin, respectively.  相似文献   

14.
Surfactants are extremely important agents to clean and sanitize various environments. Their biocidal activity is a key factor determined by the interactions between amphiphile structure and the target microbial cells. The object of this study was to analyze the interactions between four structural variants of N-alkyltropinium bromide surfactants with the Gram negative Escherichia coli and the Gram positive Listeria innocua bacteria. Microbiological and conductometric methods with a previously described FTIR bioassay were used to assess the metabolomic damage exerted by these compounds. All surfactants tested showed more biocidal activity in L. innocua than in E. coli. N-tetradecyltropinium bromide was the most effective compound against both species, while all the other variants had a reduced efficacy as biocides, mainly against E. coli cells. In general, the most prominent metabolomic response was observed for the constituents of the cell envelope in the fatty acids (W1) and amides (W2) regions and at the wavenumbers referred to peptidoglycan (W2 and W3 regions). This response was particularly strong and negative in L. innocua, when cells were challenged by N-tetradecyltropinium bromide, and by the variant with a smaller head and a 12C tail (N-dodecylquinuclidinium bromide). Tail length was critical for microbial inhibition especially when acting against E. coli, maybe due the complex nature of Gram negative cell envelope. Statistical analysis allowed us to correlate the induced mortality with the metabolomic cell response, highlighting two different modes of action. In general, gaining insights in the interactions between fine structural properties of surfactants and the microbial diversity can allow tailoring these compounds for the various operative conditions.  相似文献   

15.
The atypical hemolytic Listeria innocua strains PRL/NW 15B95 and J1-023 were previously shown to contain gene clusters analogous to the pathogenicity island (LIPI-1) present in the related foodborne gram-positive facultative intracellular pathogen Listeria monocytogenes, which causes listeriosis. LIPI-1 includes the hemolysin gene, thus explaining the hemolytic activity of the atypical L. innocua strains. No other L. monocytogenes-specific virulence genes were found to be present. In order to investigate whether any other specific L. monocytogenes genes could be identified, a global approach using a Listeria biodiversity DNA array was applied. According to the hybridization results, the isolates were defined as L. innocua strains containing LIPI-1. Surprisingly, evidence for the presence of the L. monocytogenes-specific inlA gene, previously thought to be absent, was obtained. The inlA gene codes for the InlA protein which enables bacterial entry into some nonprofessional phagocytic cells. PCR and sequence analysis of this region revealed that the flanking genes of the inlA gene at the upstream, 5′-end region were similar to genes found in L. monocytogenes serotype 4b isolates, whereas the organization of the downstream, 3′-end region was similar to that typical of L. innocua. Sequencing of the inlA region identified a small stretch reminiscent of the inlB gene of L. monocytogenes. The presence of two clusters of L. monocytogenes-specific genes makes it unlikely that PRL/NW 15B95 and J1-023 are L. innocua strains altered by horizontal transfer. It is more likely that they are distinct relics of the evolution of L. innocua from an ancestral L. monocytogenes, as postulated by others.  相似文献   

16.
Little information is available regarding the effectiveness of water disinfection by CO2 at low pressure. The aim of this study was to evaluate the use of high levels of dissolved CO2 at 0.3–0.6 MPa for the inactivation of microorganisms. Bacteriophage T4 was chosen as the model virus and Escherichia coli was selected as the representative bacterium. The results of the study showed a highly effective log inactivation of E. coli and bacteriophage T4 at low and medium initial concentrations by high levels of dissolved CO2 at 0.3 MPa with a treatment time of 20 min. When the pressure was increased to 0.6 MPa, inactivation of both microorganisms at high initial concentrations was improved to different extents. Neither pressurized air nor O2 effectively inactivated both E. coli and bacteriophage T4. The pH was not a key factor affecting the inactivation process by this method. The results of scanning electron microscopy of E. coli and transmission electron microscopy of bacteriophage T4 suggested that “CO2 uptake at high pressure and bursting of cells by depressurization” were the main reasons for lethal effect on microorganisms. This technology has potential for application in the disinfection of water, wastewater, and liquid food in the future.  相似文献   

17.
Cytotoxic necrotizing factor type 1 (CNF1) from strains of pathogenic Escherichia coli induces in human epithelial HEp-2 cells, a profound reorganization of the actin cytoskeleton into prominent stress fibres and membrane ruffles. We report here that this process is associated with induction of phagocytic-like activity. CNF1-treated cells acquired the ability to ingest latex beads as well as non-invasive bacteria such as Listeria innocua, which were taken as a model system. Uptake of bacteria was similar to pathogen-induced phagocytosis, since L. innocua transformed with DNA coding for the pore-forming toxin listeriolysln O behaved, with respect to intracellular growth, like the invasive, pathogenic species L. monocytogenes. Our results raise the possibility that, in vivo, pathogenic CNF1 -producing E. coli may invade epithelia by this novel induced phagocytic-like mechanism.  相似文献   

18.
Nisin A and polymyxin B were tested alone and in combination in order to test their antagonism against Listeria innocua HPB13 and Escherichia coli RR1, respectively. While the combination of both antibacterial substances was synergistically active against both target bacteria, nisin A alone did not show any inhibition of E. coli RR1. The nisin A/polymyxin B combination at 1.56/2.5 μg ml?1 caused lysis of about 35.86 ± 0.35 and 73.36 ± 0.14% of L. innocua HPB13 cells after 3 and 18 h, respectively. Polymyxin B at 0.12 μg ml?1 and nisin A/polymyxin B at 4.64/0.12 μg ml?1 decreased the numbers of viable E. coli RR1 cells by about 0.23 and 0.65 log10 CFU ml?1, respectively, compared to the control. Our data suggest that the concentration of nisin A required for the effective control of pathogenic strains Listeria spp. could be lowered considerably by combination with polymyxin B. The use of lower concentrations of nisin A or polymyxin B should slow the emergence of bacterial populations resistant to these agents.  相似文献   

19.
Several natural isolates of Escherichia coli O157:H7 have previously been shown to exhibit stationary-phase-dependent variation in their resistance to inactivation by high hydrostatic pressure. In this report we demonstrate that loss of the stationary-phase-inducible sigma factor RpoS resulted in decreased resistance to pressure in E. coli O157:H7 and in a commensal strain. Furthermore, variation in the RpoS activity of the natural isolates of O157:H7 correlated with the pressure resistance of those strains. Heterogeneity was noted in the rpoS alleles of the natural isolates that may explain the differences in RpoS activity. These results are consistent with a role for rpoS in mediating resistance to high hydrostatic pressure in E. coli O157:H7.  相似文献   

20.
Studies on solar inactivation of Escherichia coli in freshwater and in situ have been limited. At 63rd St. Beach, Chicago, Ill., factors influencing the daily periodicity of culturable E. coli, particularly insolation, were examined. Water samples for E. coli analysis were collected twice daily between April and September 2000 three times a week along five transects in two depths of water. Hydrometeorological conditions were continuously logged: UV radiation, total insolation, wind speed and direction, wave height, and relative lake level. On 10 days, transects were sampled hourly from 0700 to 1500 h. The effect of sunlight on E. coli inactivation was evaluated with dark and transparent in situ mesocosms and ambient lake water. For the study, the number of E. coli samples collected (n) was 2,676. During sunny days, E. coli counts decreased exponentially with day length and exposure to insolation, but on cloudy days, E. coli inactivation was diminished; the E. coli decay rate was strongly influenced by initial concentration. In situ experiments confirmed that insolation primarily inactivated E. coli; UV radiation only marginally affected E. coli concentration. The relationship between insolation and E. coli density is complicated by relative lake level, wave height, and turbidity, all of which are often products of wind vector. Continuous importation and nighttime replenishment of E. coli were evident. These findings (i) suggest that solar inactivation is an important mechanism for natural reduction of indicator bacteria in large freshwater bodies and (ii) have implications for management strategies of nontidal waters and the use of E. coli as an indicator organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号