首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ISG15 (interferon-stimulated gene 15), the first ubiquitin-like protein (UBL) identified, has emerged as an important cellular antiviral factor. It consists of two UBL domains with a short linker between them. The covalent attachment of ISG15 to host and viral proteins to modify their functions, similar to ubiquitylation, is named ISGylation. Influenza B virus NS1B protein antagonizes human but not mouse ISGylation because NS1B exhibits species specificity; it only binds human and non-human primate ISG15. Previous studies have demonstrated that the N-terminal UBL domain and linker of ISG15 are required for the binding by NS1B and that the linker plays a large role in the species specificity, but the structural basis for them has not been elucidated. Here we report the crystal structure of human ISG15 in complex with NS1B at a resolution of 2.0 Å. A loop in the ISG15 N-terminal UBL domain inserts into a pocket in the NS1B dimer, forming a high affinity binding site. The nonspecific van der Waals contacts around the ISG15 linker form a low affinity site for NS1B binding. However, sequence alignment reveals that residues in the high affinity site are highly conserved in primate and non-primate ISG15. We propose that the low affinity binding around the ISG15 linker is important for the initial contact with NS1B and that the stable complex formation is largely contributed by the following high affinity interactions between ISG15 N-terminal UBL domain and NS1B. This provides a structural basis for the species-specific binding of ISG15 by the NS1B protein.  相似文献   

2.
The function of ubiquitin-like protein ISG15 and protein modification by ISG15 (ISGylation) has been an enigma for many years. Recently, the research of ISGylation has been accelerated by the identification of the enzymes involved in the ISG15 conjugation process. Our previous study identified the interferon inducible protein EFP as an ISG15 isopeptide ligase (E3) for 14-3-3σ. In this study, we show that ISG15 E3 ligase EFP can be modified by ISG15. Two ubiquitin E2 conjugating enzymes, UbcH6 and UbcH8, can support ISGylation of EFP. The Ring-finger domain of EFP is important for its ISGylation. Full-length EFP can enhance the ISGylation of Ring domain deleted EFP, indicating EFP can function as an ISG15 E3 ligase for itself. We also determined the ISGylation site of EFP and created its ISGylation resistant mutant EFP-K117R. Compared to the wild-type EFP, this mutant further increases the ISGylation of 14-3-3σ. Thus we propose that autoISGylation of EFP negatively regulates its ISG15 E3 ligase activity for 14-3-3σ.  相似文献   

3.
ISG15 (interferon-stimulated gene 15) is a novel ubiquitin-like (UbL) modifier with two UbL domains in its architecture. We investigated different roles for the two UbL domains in protein modification by ISG15 (ISGylation) and the impact of Influenza B virus NS1 protein (NS1B) on regulation of the pathway. The results show that, although the C-terminal domain is sufficient to link ISG15 to UBE1L and UbcH8, the N-terminal domain is dispensable in the activation and transthiolation steps but required for efficient E3-mediated transfer of ISG15 from UbcH8 to its substrates. NS1B specifically binds to the N-terminal domain of ISG15 but does not affect ISG15 linkage via a thioester bond to its activating and conjugating enzymes. However, it does inhibit the formation of cellular ISG15 conjugates upon interferon treatment. We propose that the N-terminal UbL domain of ISG15 mainly functions in the ligation step and NS1B inhibits ISGylation by competing with E3 ligases for binding to the N-terminal domain.  相似文献   

4.
The cell surface of Trypanosoma brucei is dominated by the glycosylphosphatidylinositol-anchored variant surface glycoprotein (VSG), which is essential for immune evasion. VSG biosynthesis, trafficking, and turnover are well documented, but trans-membrane domain (TMD) proteins, including the invariant surface glycoproteins (ISGs), are less well characterized. Internalization and degradation of ISG65 depend on ubiquitylation of conserved cytoplasmic lysines. Using epitope-tagged ISG75 and reporter chimeric proteins bearing the cytoplasmic and trans-membrane regions of ISG75, together with multiple mutants with lysine-to-arginine mutations, we demonstrate that the cytoplasmic tail of ISG75 is both sufficient and necessary for endosomal targeting and degradation. The ISG75 chimeric reporter protein localized to endocytic organelles, while lysine-null versions were significantly stabilized at the cell surface. Importantly, ISG75 cytoplasmic lysines are modified by extensive oligoubiquitin chains and ubiquitylation is abolished in the lysine-null version. Furthermore, we find evidence for differential modes of turnover of ISG65 and ISG75. Full-length lysine-null ISG65 localization and protein turnover are significantly perturbed, but ISG75 localization and protein turnover are not, while ubiquitin conjugates can be detected for full-length lysine-null ISG75 but not ISG65. We find that the ISG75 ectodomain has a predicted coiled-coil, suggesting that ISG75 could be part of a complex, while ISG65 behaves independently. We also demonstrate a developmental stage-specific mechanism for exclusion of surface ISG expression in insect-stage cells by a ubiquitin-independent mechanism. We suggest that ubiquitylation may be a general mechanism for regulating trans-membrane domain surface proteins in trypanosomes.  相似文献   

5.
The biological effects of the ISG15 protein arise in part from its conjugation to cellular targets as a primary response to interferon-alpha/beta induction and other markers of viral or parasitic infection. Recombinant full-length ISG15 has been produced for the first time in high yield by mutating Cys78 to stabilize the protein and by cloning in a C-terminal arginine cap to protect the C terminus against proteolytic inactivation. The cap is subsequently removed with carboxypeptidase B to yield mature biologically active ISG15 capable of stoichiometric ATP-dependent thiolester formation with its human UbE1L activating enzyme. The three-dimensional structure of recombinant ISG15C78S was determined at 2.4-A resolution. The ISG15 structure comprises two beta-grasp folds having main chain root mean square deviation (r.m.s.d.) values from ubiquitin of 1.7 A (N-terminal) and 1.0 A (C-terminal). The beta-grasp domains pack across two conserved 3(10) helices to bury 627 A2 that accounts for 7% of the total solvent-accessible surface area. The distribution of ISG15 surface charge forms a ridge of negative charge extending nearly the full-length of the molecule. Additionally, the N-terminal domain contains an apolar region comprising almost half its solvent accessible surface. The C-terminal domain of ISG15 was superimposed on the structure of Nedd8 (r.m.s.d. = 0.84 A) bound to its AppBp1-Uba3 activating enzyme to model ISG15 binding to UbE1L. The docking model predicts several key side-chain interactions that presumably define the specificity between the ubiquitin and ISG15 ligation pathways to maintain functional integrity of their signaling.  相似文献   

6.
Protein targeting mechanisms in flagellated protozoan parasites have received considerable interest because of a huge bias in these organisms toward the glycosylphosphatidylinositol anchor as a mechanism for the membrane attachment of cell surface macromolecules. In this study, the trafficking of invariant surface glycoprotein 65 (ISG65), a family of type I transmembrane proteins, was examined. Analysis of the C-terminal domains of ISG65 family members demonstrated a high level of conservation and, in particular, the presence of three lysine residues contained within the cytoplasmic tails of all ISG65s. ISG65 was expressed on the cell surface, in agreement with earlier work, but an intracellular pool of ISG65 was also detected within a Rab5A early endosome. Transplantation of the C-terminal 74 amino acids of ISG65 (encompassing the 23 C-terminal residues of the extracellular domain, the transmembrane peptide, and the cytoplasmic domain) onto the N-terminal domain of BiP (BiPN) was sufficient to target the chimera to the same internal compartments as native ISG65. Further, site-directed mutagenesis indicated that the cytoplasmic tail was required for endoplasmic reticulum exit and that at least two of the cytoplasmic domain lysine residues are needed for endosomal targeting, as removal of all three led to surface expression. Kinetic measurements demonstrate that the BiPN fusion protein (containing the ISG65 C terminus) has a short half-life, indicating rapid turnover. In contrast, BiPN fusion proteins containing a glycosylphosphatidylinositol anchor instead of the ISG65 C-terminal region are stably expressed on the surface, confirming the requirement for the ISG65 sequence for endosomal targeting. We suggest that the lack of surface expression of the BiPN-ISG65 fusion protein is likely due to more efficient internalization compared with ISG65. Taken together, these data demonstrate the presence of a lysine-dependent endocytosis signal in the ISG65 family.  相似文献   

7.
Type I interferon (IFN) stimulates expression and conjugation of the ubiquitin-like modifier IFN-stimulated gene 15 (ISG15), thereby restricting replication of a wide variety of viruses. Conjugation of ISG15 is critical for its antiviral activity in mice. HECT domain and RCC1-like domain containing protein 5 (HerC5) mediates global ISGylation in human cells, whereas its closest relative, HerC6, does not. So far, the requirement of HerC5 for ISG15-mediated antiviral activity has remained unclear. One of the main obstacles to address this issue has been that no HerC5 homologue exists in mice, hampering the generation of a good knock-out model. However, mice do express a homologue of HerC6 that, in contrast to human HerC6, can mediate ISGylation.Here we report that the mouse HerC6 N-terminal RCC1-like domain (RLD) allows ISG15 conjugation when replacing the corresponding domain in the human HerC6 homologue. In addition, sequences in the C-terminal HECT domain of mouse HerC6 also appear to facilitate efficient ISGylation. Mouse HerC6 paralleled human HerC5 in localization and IFN-inducibility. Moreover, HerC6 knock-down in mouse cells abolished global ISGylation, whereas its over expression enhanced the IFNβ promoter and conferred antiviral activity against vesicular stomatitis virus and Newcastle disease virus. Together these data indicate that HerC6 is likely the functional counterpart of human HerC5 in mouse cells, suggesting that HerC6(-/-) mice may provide a feasible model to study the role of human HerC5 in antiviral responses.  相似文献   

8.
The ubiquitin-like modifier ISG15 is one of the most predominant proteins induced by type I interferons (IFN). In this study, murine embryo fibroblast (MEFs) and mice lacking the gene were used to demonstrate a novel role of ISG15 as a host defense molecule against vaccinia virus (VACV) infection. In MEFs, the growth of replication competent Western Reserve (WR) VACV strain was affected by the absence of ISG15, but in addition, virus lacking E3 protein (VVDeltaE3L) that is unable to grow in ISG15+/+ cells replicated in ISG15-deficient cells. Inhibiting ISG15 with siRNA or promoting its expression in ISG15-/- cells with a lentivirus vector showed that VACV replication was controlled by ISG15. Immunoprecipitation analysis revealed that E3 binds ISG15 through its C-terminal domain. The VACV antiviral action of ISG15 and its interaction with E3 are events independent of PKR (double-stranded RNA-dependent protein kinase). In mice lacking ISG15, infection with VVDeltaE3L caused significant disease and mortality, an effect not observed in VVDeltaE3L-infected ISG15+/+ mice. Pathogenesis in ISG15-deficient mice infected with VVDeltaE3L or with an E3L deletion mutant virus lacking the C-terminal domain triggered an enhanced inflammatory response in the lungs compared with ISG15+/+-infected mice. These findings showed an anti-VACV function of ISG15, with the virus E3 protein suppressing the action of the ISG15 antiviral factor.  相似文献   

9.
The invariant surface glycoprotein ISG75 is a transmembrane glycoprotein occurring on the surface of the bloodstream-form Trypanozoon. This study describes the expression and purification of the N-terminal extracellular domain of ISG75, a novel target for development of diagnostic tests for trypanosomosis. To facilitate disulfide formation in the cytoplasm, a 1287-bp cDNA fragment encoding ISG75 from Trypanosoma brucei gambiense was expressed in a thioredoxin reductase, glutathione oxidoreductase double mutant Escherichia coli strain. An accessory plasmid pRIL, providing the argI, ileY, and leuW tRNAs, was necessary for efficient heterologous translation of the ISG75 mRNA. The recombinant double-tagged (streptavidine and histidine) ISG75 was purified by two-step affinity chromatography. Addition of L-glutamic acid and L-arginine in the buffer solutions was crucial to stabilise the protein during purification. The purified soluble protein was characterised by circular dichroism spectroscopy, reverse-phase high pressure liquid chromatography and mass spectrometry. It has an alpha-helical folded conformation, is homogeneous and pure (99%). Furthermore, sera of Trypanosoma brucei-infected animals specifically recognise this recombinant ISG75; and rabbit antiserum raised against the recombinant ISG75 detects all species of the Trypanozoon subgenus in parasite preparations.  相似文献   

10.
Type I interferon (alpha/beta interferon [IFN-α/β]) stimulates the expression of interferon-stimulated gene 15 (ISG15), which encodes a ubiquitin-like protein, ISG15. Free ISG15 and ISG15 conjugates function in diverse cellular pathways, particularly regulation of antiviral innate immune responses. In this study, we demonstrate that ISG15 overexpression inhibits porcine reproductive and respiratory syndrome virus (PRRSV) replication in cell culture and that the antiviral activity of interferon is reduced by inhibition of ISG15 conjugation. PRRSV nonstructural protein 2 (nsp2) was previously identified as a potential antagonist of ISG15 production and conjugation. The protein contains a papain-like protease domain (PLP2) that plays a crucial role in the proteolytic cleavage of the PRRSV replicase polyproteins. PLP2 was also proposed to belong to the ovarian tumor domain-containing superfamily of deubiquitinating enzymes (DUBs), which is capable of inhibiting ISG15 production and counteracting ISG15 conjugation to cellular proteins. To determine whether this immune antagonist function could be selectively inactivated, we engineered a panel of mutants with deletions and/or mutations at the N-terminal border of the nsp2 PLP2-DUB domain. A 23-amino-acid deletion (amino acids 402 to 424 of the ORF1a-encoded protein) largely abolished the inhibitory effect of nsp2 on ISG15 production and conjugation, but no viable recombinant virus was recovered. A 19-amino-acid deletion (amino acids 402 to 420), in combination with a downstream point mutation (S465A), partially relieved the ISG15 antagonist function and yielded a viable recombinant virus. Taken together, our data demonstrate that ISG15 and ISGylation play an important role in the response to PRRSV infection and that nsp2 is a key factor in counteracting the antiviral function of ISG15.  相似文献   

11.
Interferon‐stimulated gene 15 (ISG15), a ubiquitin‐like protein, is induced by type I INF. Although several groups have reported ISGylation of the HCV NS5A protein, it is still unclear whether ISGylation of NS5A has anti‐ or pro‐viral effects in hepatitis C virus (HCV) infection. In the present study, the role of ISGylation‐independent, unconjugated ISG15 in HCV infection was examined. Immunoprecipitation analyses revealed that ISG15 interacts specifically with NS5A domain I. ISG15 mutants lacking the C‐terminal glycine residue that is essential for ISGylation still interacted with NS5A protein. Taken together, these results suggest that unconjugated ISG15 affects the functions of HCV NS5A through protein–protein interaction.
  相似文献   

12.
《Journal of molecular biology》2019,431(21):4203-4216
Interferon-stimulated gene product 15 (ISG15) is a key component of host responses to microbial infection. Despite having been known for four decades, grasping the functions and features of ISG15 has been a slow and elusive process. Substantial work over the past two decades has greatly enhanced this understanding, revealing the complex and variable nature of this protein. This has unveiled multiple mechanisms of action that are only now beginning to be understood. In addition, it has uncovered diversity not only between how ISG15 affects different pathogens but also between the function and structure of ISG15 itself between different host species. Here we review the complexity of ISG15 within the context of viral infection, focusing primarily on its antiviral function and the mechanisms viruses employ to thwart its effects. We highlight what is known regarding the impact of ISG15 sequence and structural diversity on these interactions and discuss the aspects presenting the next frontier toward elucidating a more complete picture of ISG15 function.  相似文献   

13.
The ultrastructural peculiarities of mitochondria-rich cells of the frog urinary bladder are analysed using three electron microscopic methods: ultrathin sections, scanning electron microscopy, freeze fracture. The mitochondria and tubular and vesicular structures are most abundant in the apical region of cytoplasm. The P-face (PF) of the apical plasma membrane is characterized by the presence of rod-shaped intramembrane particles (IMP), whereas the E-face (EF) possesses complementary pits. Depending on the distribution density of the rod-shaped IMP, three types of cells are described. The apical plasma membrane has an invert distribution of the globular IMP: a great quantity of IMP on the EF and a few particles on the PF. This structure of the apical plasma membrane is supposed to correlate with its very low water permeability. Using filipin as a marker of cholesterol localization, it has been shown that the mitochondria-rich cell apical membrane contains more cholesterol than that of the granular cells. The nature of the rod-shaped IMP and their role in the transmembrane ion transport have been discussed.  相似文献   

14.
The analysis of ultrastructural characteristics of mitochondria-rich cells of the frog urinary bladder with the aid of three electron microscopic methods (ultrathin sections, scanning electron microscopy, freeze-fracture) has been done. The inverted distribution of globular intramembrane particles (IMP) in apical membranes reflecting their low water permeability has been shown. The typical feature of plasma membranes of mitochondria-rich cells is the presence of rod-shaped IMP on the P-face of the apical membrane and complementary pits on the EF. There is a correlation between the quantity of rod-shaped IMP and the rate of ionic transport. The analysis of cholesterol contents in plasma membranes of epithelial cells of the frog urinary bladder has shown that the apical membranes of mitochondria-rich cells contain more cholesterol than those of granular cells; the great pat of cholesterol is localized in the cytoplasmic leaflet.  相似文献   

15.
Yuan W  Krug RM 《The EMBO journal》2001,20(3):362-371
Of the several hundred proteins induced by interferon (IFN) alpha/beta, the ubiquitin-like ISG15 protein is one of the most predominant. We demonstrate the novel way in which the function of the ISG15 protein is inhibited by influenza B virus, which strongly induces the ISG15 protein: a specific region of the influenza B virus NS1 protein, which includes part of its effector domain, blocks the covalent linkage of ISG15 to its target proteins both in vitro and in infected cells. We identify UBE1L as the E1 enzyme that catalyzes the first activation step in the conjugation of ISG15, and show that the NS1B protein inhibits this activation step in vitro. Influenza A virus employs a different strategy: its NS1 protein does not bind the ISG15 protein, but little or no ISG15 protein is produced during infection. We discuss the likely basis for these different strategies.  相似文献   

16.
The interferon-stimulated gene, 15 kDa (ISG15) is an interferon regulated gene that is induced as a primary response to diverse microbial and cell stress stimuli, and encodes the founding member of the ubiquitin-like protein family. ISG15 post-translationally modifies proteins via a pathway parallel to, and partially overlapping with, that of ubiquitin. In addition, ISG15 is released from cells to mediate extracellular cytokine-like activities. Although the biological activities of ISG15 have yet to be fully elucidated, it is clear that ISG15 has the capacity to modulate diverse cellular and physiologic functions. Consistent with this view, alterations in the ISG15 pathway have been identified in human tumors and in tumor cell lines. Here we review evidence of a role for ISG15 as an endogenous tumor suppressor that, when dysregulated in malignant cells, can be subverted to promote oncogenesis.  相似文献   

17.
Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes a papain-like protease (PLpro) with both deubiquitinating (DUB) and deISGylating activities that are proposed to counteract the post-translational modification of signaling molecules that activate the innate immune response. Here we examine the structural basis for PLpro''s ubiquitin chain and interferon stimulated gene 15 (ISG15) specificity. We present the X-ray crystal structure of PLpro in complex with ubiquitin-aldehyde and model the interaction of PLpro with other ubiquitin-chain and ISG15 substrates. We show that PLpro greatly prefers K48- to K63-linked ubiquitin chains, and ISG15-based substrates to those that are mono-ubiquitinated. We propose that PLpro''s higher affinity for K48-linked ubiquitin chains and ISG15 stems from a bivalent mechanism of binding, where two ubiquitin-like domains prefer to bind in the palm domain of PLpro with the most distal ubiquitin domain interacting with a “ridge” region of the thumb domain. Mutagenesis of residues within this ridge region revealed that these mutants retain viral protease activity and the ability to catalyze hydrolysis of mono-ubiquitin. However, a select number of these mutants have a significantly reduced ability to hydrolyze the substrate ISG15-AMC, or be inhibited by K48-linked diubuiquitin. For these latter residues, we found that PLpro antagonism of the nuclear factor kappa-light-chain-enhancer of activated B-cells (NFκB) signaling pathway is abrogated. This identification of key and unique sites in PLpro required for recognition and processing of diubiquitin and ISG15 versus mono-ubiquitin and protease activity provides new insight into ubiquitin-chain and ISG15 recognition and highlights a role for PLpro DUB and deISGylase activity in antagonism of the innate immune response.  相似文献   

18.
ISG15 is an interferon-induced ubiquitin-like modifier which can be conjugated to distinct, but largely unknown, proteins. ISG15 has been implicated in a variety of biological activities, which encompass antiviral defense, immune responses, and pregnancy. Mice lacking UBP43 (USP18), the ISG15-deconjugating enzyme, develop a severe phenotype with brain injuries and lethal hypersensitivity to poly(I:C). It has been reported that an augmented conjugation of ISG15 in the absence of UBP43 induces prolonged STAT1 phosphorylation and that the ISG15 conjugation plays an important role in the regulation of JAK/STAT and interferon signaling (O. A. Malakhova, M. Yan, M. P. Malakhov, Y. Yuan, K. J. Ritchie, K. I. Kim, L. F. Peterson, K. Shuai, and D. E. Zhang, Genes Dev. 17:455-460, 2003). Here, we report that ISG15(-/-) mice are viable and fertile and display no obvious abnormalities. Lack of ISG15 did not affect the development and composition of the main cellular compartments of the immune system. The interferon-induced antiviral state and immune responses directed against vesicular stomatitis virus and lymphocytic choriomeningitis virus were not significantly altered in the absence of ISG15. Furthermore, interferon- or endotoxin-induced STAT1 tyrosine-phosphorylation, as well as expression of typical STAT1 target genes, remained unaffected by the lack of ISG15. Thus, ISG15 is dispensable for STAT1 and interferon signaling.  相似文献   

19.
The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein   总被引:181,自引:0,他引:181  
M Koenig  A P Monaco  L M Kunkel 《Cell》1988,53(2):219-228
The complete sequence of the human Duchenne muscular dystrophy (DMD) cDNA has been determined. The 3685 encoded amino acids of the protein product, dystrophin, can be separated into four domains. The 240 amino acid N-terminal domain has been shown to be conserved with the actin-binding domain of alpha-actinin. A large second domain is predicted to be rod-shaped and formed by the succession of 25 triple-helical segments similar to the repeat domains of spectrin. The repeat segment is followed by a cysteine-rich segment that is similar in part to the entire COOH domain of the Dictyostelium alpha-actinin, while the 420 amino acid C-terminal domain of dystrophin does not show any similarity to previously reported proteins. The functional significance of some of the domains is addressed relative to the phenotypic characteristics of some Becker muscular dystrophy patients. Dystrophin shares many features with the cytoskeletal protein spectrin and alpha-actinin and is a large structural protein that is likely to adopt a rod shape about 150 nm in length.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号