首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IL-6/IFN-beta 2 is a family of phosphoglycoproteins ranging in size from 19 to 30 kDa which elicits a broad range of physiologic and immune responses. Several cytokines, including TNF, have been shown to stimulate IL-6 production in cell culture. In this report, we describe the rapid induction of circulating biologically active IL-6 by the systemic administration of rTNF to patients with cancer. Low levels of IL-6 activity could be detected in the sera of patients as early as 5 min after rTNF infusion. IL-6 levels peaked approximately 2 to 3 h after rTNF bolus administration and were undetectable in most cases within 8 h. IL-6 was detected in two separate bioassays--the hybridoma B9 proliferation and the hepatocyte-stimulating factor assay. Maximum detectable levels of IL-6 ranged from 160 to 310 hybridoma growth factor units and 11-82 ng/ml in the hepatocyte-stimulating factor assay. IL-6 induction decreased after serial, daily doses of rTNF. Serial serum samples of patients receiving IL-2 or IFN-alpha were also assayed for IL-6 production. IL-2-treated but not IFN-alpha-treated patients generated low levels of IL-6 (range less than 20 to 95 hybridoma growth factor units/ml). Interestingly, in patients treated with IL-2, serum levels of TNF were detectable and peak TNF activity preceded measurable IL-6 levels. Serum levels of acute phase plasma proteins and of corticosteroid rose in response to rTNF administration. C-reactive protein increased (2.5 to 4.0-fold) within 8 h of rTNF administration and cortisol levels rose (10- to 20-fold) within 4 h after rTNF injection. We conclude that rTNF administration in man leads to the induction of circulating IL-6 which, due to its broad range of activities, may be an important physiologic signal regulating the immune response.  相似文献   

2.
3.
We have previously demonstrated that administration of the recently described cytokine IL-17 in rat airways in vivo recruits and activates neutrophils locally. In the current study, we examined whether endogenous IL-17 is involved in mediating neutrophil recruitment caused by endotoxin exposure in mouse airways. Our in vivo data show that local endotoxin exposure causes the release of free, soluble IL-17 protein 6 h later. Systemic pretreatment with a neutralizing anti-IL-17 Ab almost completely inhibits neutrophil recruitment 24 h, but not 6 h, after endotoxin exposure in the airways. Pretreatment with neutralizing anti-IL-6 and anti-macrophage inflammatory protein (MIP)-2 Abs inhibits neutrophil recruitment caused by local endotoxin exposure and IL-17, respectively. Our in vitro data show that endotoxin exposure stimulates the release of soluble IL-17 protein in T lymphocytes harvested from lung and spleen, respectively, and that this cytokine release requires coculture with airway macrophages. Intracellular IL-17 protein is detected in T lymphocytes from spleen but not in airway macrophages after coculture and stimulation of these two cell types. Finally, anti-IL-17 does not alter endotoxin-induced release of IL-6 and MIP-2 from T lymphocytes and airway macrophages in coculture. In conclusion, our results indicate that endotoxin exposure causes the release of IL-17 from T lymphocytes and that this cytokine release requires the presence of macrophages. Once released, endogenous IL-17 acts in part by inducing local release of neutrophil-mobilizing cytokines such as IL-6 and MIP-2, from nonlymphocyte, nonmacrophage cells, and this contributes to recruitment of neutrophils in the airways. These IL-17-related mechanisms constitute potential targets for pharmacotherapy against exaggerated neutrophil recruitment in airway disease.  相似文献   

4.
The cytokine IFN-beta 2/IL-6 has emerged as an important means of communication between cells--both within the immune system as well as outside it. In exploring the link between the endocrine and the immune systems, we have studied the secretion of IFN-beta 2/IL-6 by freshly explanted human endometrial stromal cells and its modulation by estrogens. Endometrial stromal cells produced IFN-beta 2/IL-6 in response to other inflammation-associated cytokines such as IL-1 alpha or beta, TNF, and IFN-gamma. This secretion was strongly inhibited by estradiol-17 beta at concentrations as low as 10(-9) M. Multiple species of stromal cell IFN-beta 2/IL-6 in the size range 23 to 30 kDa were detected using immunoprecipitation or immunoblotting procedures. The endometrial stromal cell IFN-beta 2/IL-6 species were phosphorylated and differentially glycosylated in a manner comparable to IFN-beta 2/IL-6 secreted by induced human peripheral blood monocytes or foreskin fibroblasts. However, in contrast to peripheral blood monocytes and fibroblasts, bacterial LPS did not induce IFN-beta 2/IL-6 production in endometrial stromal cells. Additionally, the IFN-beta 2/IL-6 identified in medium from IL-1 alpha-induced stromal cells is biologically active on hepatocytes. These observations, taken together with the observation that IFN-beta 2/IL-6 strongly inhibits the proliferation of human epithelial cells, suggest the possibility that stromal cell secreted IFN-beta 2/IL-6 may affect the physiology of the overlying epithelium in an hormonally modulated manner. Estrogen-regulated production of endometrial IFN-beta 2/IL-6 may participate in gender-specific systemic immunomodulation.  相似文献   

5.
Novel anti-inflammatory effects of insulin have recently been described, and insulin therapy to maintain euglycemia suppresses the plasma levels of free fatty acids (FFA) and increases the survival of critically ill patients. We aimed to explore the effect of short-term high levels of plasma FFA on the inflammatory response to a low dose of endotoxin. Fourteen healthy male volunteers underwent the following two trials in a randomized crossover design: 1) continuous infusion of 20% Intralipid [0.7 ml.kg(-1).h(-1) (1.54 g/kg)] for 11 h, and 2) infusion of isotonic saline for 11 h (control). In each trial, heparin was given to activate lipoprotein lipase, and an intravenous bolus of endotoxin (0.1 ng/kg) was given after 6 h of Intralipid/saline infusion. Blood samples and muscle and fat biopsies were obtained before the Intralipid/saline infusion and before as well as after infusion of an endotoxin bolus. Plasma levels of FFA, triglycerides, and glycerol were markedly increased during the Intralipid infusion. Endotoxin exposure induced an increase in plasma levels of TNF-alpha, IL-6, and neutrophils and further stimulated gene expression of TNF-alpha and IL-6 in both skeletal muscle and adipose tissue. The systemic inflammatory response to endotoxin was significantly pronounced during Intralipid infusion. Short-term hyperlipidemia enhances the inflammatory response to endotoxin, and skeletal muscle and adipose tissue are capable of producing essential inflammatory mediators after endotoxin stimulation.  相似文献   

6.
Abstract We measured urinary endotoxin, IL-6 and IL-8 levels in 23 patients with gram-negative urosepsis. The endotoxin and cytokine levels showed a 100–1000 fold range. No correlation was found between levels of urinary endotoxin, and IL-6 or IL-8 levels. In all cases bacterial numbers were ≥ 105 CFU ml−1 urine. The endotoxin content of the isolated microorganisms neither correlated with the urinary cytokine levels, nor with IL-6 and IL-8 levels obtained in vitro when 103 log-phase CFU of each of the bacteria were incubated with heparinized whole blood of three healthy donors. Neither the haemolysin phenotype of the bacteria, nor the presence of the P-pili gene was correlated with the cytokine response in vivo or in vitro. Other factors than known bacterial virulence factors apparently contribute to the wide variation in urinary cytokine levels in urinary tract infection.  相似文献   

7.
Peripheral administration of a variety of inflammatory stimuli, such as endotoxin or cytokines, induces an orchestrated set of brain-mediated events referred to as the sickness response. The mechanism for how immune products signal the brain is not clear, but accumulating evidence supports the existence of neural as well as blood-borne pathways. Although endotoxin or cytokine administration results in sickness responses, few data exist regarding the role of circulating endotoxin or cytokines in the induction of sickness during a real bacterial infection. Thus the present studies examined whether subcutaneously administered Escherichia coli can activate sickness responses and whether circulating endotoxin and/or proinflammatory cytokines are a prerequisite for these responses. Male Sprague-Dawley rats were injected subcutaneously with one of three doses (2.5 x 10(7), 2.5 x 10(8), 2.5 x 10(9) colony-forming units) of replicating E. coli, a ubiquitous bacterial strain, or vehicle. Core body temperature (Tc) and activity were measured for 3 days after the injection. A second set of groups of animals were killed 3, 6, 12, 18, 24, and 48 h after the injection, and blood samples and brains were collected. Injections dose dependently and consistently increased Tc and decreased activity, with increases in Tc beginning 4 h after the injection. In addition, E. coli significantly increased serum interleukin (IL)-1beta, IL-6, and tumor necrosis factor-alpha and brain IL-1beta levels beginning at the 6-h time point. Corticosterone and endotoxin were first elevated in the circulation at 3 and 18 h after the injection, respectively. Because fever onset preceded brain cytokine induction, we also examined cytokine levels in the serum, brain, and inflammation site 2 and 4 h after injection. Cytokines were elevated at the inflammation site but were not detectable in the serum or brain at 2 and 4 h. We conclude that subcutaneous injection of replicating E. coli induces a consistent and naturalistic infection that includes features of the sickness response as well as increases in circulating, brain, and inflammation site tissue cytokines. In addition, injection of replicating E. coli produces a robust fever and corticosterone response at a time when there are no detectable increases in circulating cytokines or endotoxin. These results suggest that elevated levels of circulating cytokines and endotoxin are not necessary for the activation of the sickness or corticosterone response. Therefore, fever, activity reduction, and corticosterone elevation induced by E. coli infection may have been evoked by a neural, rather than a humoral, pathway from the periphery to the brain.  相似文献   

8.
EBV infects human B lymphocytes and induces them to proliferate, to produce Ig, and to give rise to immortal cell lines. Although the mechanisms of B cell activation by EBV are largely unknown, the continuous proliferation of EBV-immortalized B cells is dependent, at least in part, upon autocrine growth factors produced by the same EBV-infected B cells. In the present studies we have examined the influence of monocytes on B cell activation by EBV and found that unlike peripheral blood T cells and B cells, monocytes enhance by as much as 30- to 50-fold virus-induced B cell proliferation and Ig production. Upon activation with LPS, monocytes secrete a growth factor activity that promotes both proliferation and Ig secretion in EBV-infected B cells and thus reproduces the effects of monocytes in these cultures. Unlike a number of other factors, rIFN-beta 2/B cell stimulatory factor 2 (BSF-2)/IL-6 stimulates the growth of human B cells activated by EBV in a manner similar to that induced by activated monocyte supernatants. In addition, an antiserum to IFN-beta that recognizes both IFN-beta 1 and IFN-beta 2 completely neutralizes the B cell growth factor activity of activated monocyte supernatants. These findings demonstrate that IFN-beta 2/BSF-2/IL-6 is a growth factor for human B cells activated by EBV and suggest that this molecule is responsible for B cell growth stimulation induced by activated monocyte supernatants. We have examined the possibility that IFN-beta 2/BSF-2/IL-6 might also be responsible for B cell growth stimulation by supernatants of EBV-immortalized B cells and thus may function as an autocrine growth factor. However, IFN-beta 2/BSF-2/IL-6 is not detectable in supernatants of EBV-immortalized B cells by immunoprecipitation. Also, an antiserum to IFN-beta that neutralizes IFN-beta 2/BSF-2/IL-6 fails to neutralize autocrine growth factor activity. This suggests that autocrine growth factors produced by EBV-immortalized B cells are distinct from IFN-beta 2/BSF-2/IL-6. Thus, the continuous proliferation of EBV-immortalized B cells is enhanced by either autocrine or paracrine growth factors. One of the mediators with paracrine growth factor activity is IFN-beta 2/BSF-2/IL-6.  相似文献   

9.
10.
11.
Human recombinant IL-1 beta was able to kill C3H/HeJ mice only when inoculated intravenously at very high doses. IL-1 beta, inoculated at 100 mg/kg i.v. as a bolus, induced a shock-like state characterized by anorexia, severe hypothermia and hypoglycemia and persistent neutrophilia, leading to death in 55% of animals generally between 24 and 48 h. In contrast, the noninflammatory adjuvant IL-1 beta peptide VQGEESNDK (position 163-171) did not induce any toxic effect in vivo, when administered following the same schedule. At variance with what was previously observed in endotoxin induced shock, IL-1 beta induced death was not preceded by appearance of circulating TNF. On the other hand, very high and persistent levels of circulating IL-6 could be detected after lethal IL-1 beta administration. Treatment of mice with ibuprofen or with chlorpromazine, both known to counteract some of the toxic effects of IL-1 in vivo, could protect from IL-1 beta induced mortality. Both drugs, at doses protecting from IL-1 beta induced death, were able to abolish IL-1 beta-induced rise of circulating phospholipase A2 (PLA2) activity, and the subsequent generation of toxic PLA2-derived metabolites.  相似文献   

12.
13.
Physically active rats have facilitated heat shock protein 72 (Hsp72) responses after stressor exposure in both brain and peripheral tissues compared with sedentary rats. This study verifies that physically active animals do not have elevated Hsp72 levels compared with sedentary animals in the hypothalamus, pituitary, or dorsal vagal complex. We then examined whether 1) physically active rats respond more efficiently than sedentary rats to a bacterial challenge; 2) peripheral immune challenge elicits brain induction of Hsp72; 3) this induction is facilitated by prior freewheel running; and 4) Hsp72 upregulation produced by peripheral immune challenge results in a commensurate decrease in the proinflammatory cytokine IL-1beta. Adult male Fischer 344 rats were housed with either a mobile or locked running wheel. Six weeks later, rats were injected intraperitoneally with saline or Escherichia coli and killed 30 min, 2.5 h, 6 h, and 24 h later. Serum endotoxin and IL-1beta, and peritoneal fluid endotoxin and E. coli colony-forming units (CFUs) were measured. Hsp72 and IL-1beta were measured in hypothalamus, pituitary, and dorsal vagal complex. The results were that physically active rats had a faster reduction in endotoxin and E. coli CFUs and lower levels of circulating endotoxin and cytokines compared with sedentary rats. E. coli challenge elicited significantly greater time-dependent increases of both Hsp72 and IL-1beta in hypothalamus, pituitary, and dorsal vagal complex of physically active animals but not sedentary animals. Contrary to our hypothesis, increases in Hsp72 were positively correlated with IL-1beta. This study extends our findings that physical activity facilitates stress-induced Hsp72 to include immunological stressors such as bacterial challenge and suggests that brain Hsp72 and IL-1beta responses to peripheral immune challenge may contribute to exercise-mediated resistance to long-term sickness.  相似文献   

14.
Although cytokines and other soluble regulators of immunity are known to be involved in hematopoiesis, little is known about the signals that induce the synthesis of those mediators locally. Based on recent studies linking the neuroendocrine hormone thyrotropin [thyroid-stimulating hormone (TSH)] to immune cell function in other tissues, we investigated the capacity of TSH to activate cytokine responses from bone marrow cells. These studies reveal that stimulation of the TSH receptor on bone marrow cells-using highly purified or recombinant TSH or by direct stimulation with anti-TSH receptor antibodies-rapidly induces the synthesis of cytokines from bone marrow cells that are classically used in the regulation of inflammatory responses. Of 13 cytokines screened for activity by ELISA or by RNase protection assays for gene expression, IL-6, IFN-beta, TNFalpha, TNFbeta, TGFbeta2, and lymphotoxin-beta responses were reproducibly induced by TSH within 2-3 h of stimulation. Intracellularly, TSH stimulation of bone marrow cells caused rapid increases in cAMP levels and induced the phosphorylation of the Jak2 protein kinase, thereby defining a novel G-protein-coupled receptor/cytokine synthesis pathway. These findings demonstrate that TSH can serve as a primary inductive signal of cytokine production by bone marrow cells.  相似文献   

15.
Chronic heart failure (CHF) may be considered a state of immune activation and persistent inflammation expressed by increased circulating levels of pro- and anti-inflammatory cytokines. The purpose of the study was to investigate the immune status in patients with CHF compared to normal individuals. We measured serum cytokine levels as well as cytokine production after ex vivo LPS stimulation of whole blood taken from 14 patients with CHF and 14 healthy volunteers. We used 500 pg/ml of LPS for an incubation period of 4h to stimulate 100 microL of whole blood. Patients with CHF had significantly higher levels of TNF-RI, and TNF-RII in serum compared to normal individuals. TNF-alpha, IL-6, and IL-10 did not differ significantly. After LPS stimulation, patients with CHF had significantly higher levels of TNF-alpha and IL-10, and significantly lower IL-6 levels compared to normal individuals. TNF-alpha receptors did not differ significantly. Patients with CHF may be found in a pro- as well as an anti-inflammatory state. They also do not develop endotoxin tolerance in an ex vivo laboratory model using whole blood stimulated with LPS. They may have increased TNF-alpha and IL-10 production after LPS stimulation of whole blood, which may contribute to a worsening of heart function, more severe disease presentation and a worse outcome during infections.  相似文献   

16.
17.

Background

mTORC1 (mammalian target of rapamycin complex 1) activation has been demonstrated in response to endotoxin challenge, but the mechanism and significance are unclear. We investigated the effect of mTORC1 suppression in an animal model of endotoxemia and in a cellular model of endotoxin signaling.

Methodology/Principal Findings

Mice were treated with the mTORC1 inhibitor rapamycin or vehicle prior to lethal endotoxin challenge. Mortality and cytokine levels were assessed. Cultured macrophage-like cells were challenged with endotoxin with or without inhibitors of various pathways known to be upstream of mTORC1. Activated pathways, including downstream S6K pathway, were assessed by immunoblots. We found that mTORC1-S6K suppression by rapamycin delayed mortality of mice challenged with lethal endotoxin, and was associated with dampened circulating levels of VEGF, IL-1β, IFN-γ and IL-5. Furthermore, in vitro cellular studies demonstrated that LPS (lipopolysaccharide) activation of mTORC1-S6K still occurs in the presence of PI3K-Akt inhibition alone, but can be suppressed by concurrent inhibition of PI3K-Akt and MEK-ERK pathways.

Conclusions/Significance

We conclude that cellular activation of mTORC1-S6K contributes to cytokine up-regulation and mortality in response to endotoxin, and may occur via multiple pathways.  相似文献   

18.
The precise role of IL-6 in liver regeneration and hepatocyte proliferation is controversial and the role of SOCS3 in liver regeneration remains unknown. Here we show that in vitro treatment with IL-6 inhibited primary mouse hepatocyte proliferation. IL-6 induced p21cip1 protein expression in primary mouse hepatocytes. Disruption of the p21cip1 gene abolished the inhibitory effect of IL-6 on cell proliferation. Co-culture with nonparenchymal liver cells diminished IL-6 inhibition of hepatocyte proliferation, which was likely due to IL-6 stimulation of nonparenchymal cells to produce HGF. Finally, IL-6 induced higher levels of p21cip1 protein expression and a slightly stronger inhibition of cell proliferation in SOCS3+/- mouse hepatocytes compared to wild-type hepatocytes, while liver regeneration was enhanced and prolonged in SOCS3+/- mice. Our findings suggest that IL-6 directly inhibits hepatocyte proliferation via a p21cip1-dependent mechanism and indirectly enhances hepatocyte proliferation via stimulating nonparenchymal cells to produce HGF. SOCS3 negatively regulates liver regeneration.  相似文献   

19.
Binge drinking, the most common form of alcohol consumption, is associated with increased mortality and morbidity; yet, its biological consequences are poorly defined. Previous studies demonstrated that chronic alcohol use results in increased gut permeability and increased serum endotoxin levels that contribute to many of the biological effects of chronic alcohol, including alcoholic liver disease. In this study, we evaluated the effects of acute binge drinking in healthy adults on serum endotoxin levels. We found that acute alcohol binge resulted in a rapid increase in serum endotoxin and 16S rDNA, a marker of bacterial translocation from the gut. Compared to men, women had higher blood alcohol and circulating endotoxin levels. In addition, alcohol binge caused a prolonged increase in acute phase protein levels in the systemic circulation. The biological significance of the in vivo endotoxin elevation was underscored by increased levels of inflammatory cytokines, TNFα and IL-6, and chemokine, MCP-1, measured in total blood after in vitro lipopolysaccharide stimulation. Our findings indicate that even a single alcohol binge results in increased serum endotoxin levels likely due to translocation of gut bacterial products and disturbs innate immune responses that can contribute to the deleterious effects of binge drinking.  相似文献   

20.
The vagus nerve appears to play a role in communicating cytokine signals to the central nervous system, but the exact extent of its involvement in cytokine-to-brain communication remains controversial. Recently, subdiaphragmatic vagotomy was shown to increase bacterial translocation across the gut barrier and thus may cause endotoxin tolerance. The current experiment tested whether or not vagotomized animals have similar systemic responses to endotoxin challenge as do sham-operated animals. Subdiaphragmatically vagotomized and sham-operated animals were injected intraperitoneally with one of three doses (10, 50, 100 microg/kg) of lipopolysaccharide (LPS) or vehicle, and blood samples were taken at 15, 30, 60, 90, and 120 min after the injection. The intraperitoneal injection of LPS increased circulating LPS levels at all time points examined. In addition, all three doses of LPS significantly increased serum interleukin (IL)-1beta, IL-6, and corticosterone in both control and vagotomized rats. In conclusion, vagotomy itself has no marked effect on circulating endotoxin levels or the production of IL-1beta, IL-6, or corticosterone in blood after an intraperitoneal injection of LPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号