首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Seed traits are important factors affecting seed predation by rodents and thereby the success of recruitment. Seeds of many tree species have hard hulls. These are thought to confer mechanical protection, but the effect of endocarp thickness on seed predation by rodents has not been well investigated. Wild apricot (Prunus armeniaca), wild peach (Amygdalus davidiana), cultivated walnut (Juglans regia), wild walnut (Juglans mandshurica Maxim) and Liaodong oak (Quercus liaotungensis) are very common tree species in northwestern Beijing city, China. Their seeds vary greatly in size, endocarp thickness, caloric value and tannin content. This paper aims to study the effects of seed traits on seed removal speed of these five tree species by small rodents in a temperate deciduous forest, with emphasis on the effect of endocarp thickness. The results indicated that speed of removal of seeds released at stations in the field decreased significantly with increasing endocarp thickness. We found no significant correlations between seed removal speed and other seed traits such as seed size, caloric value and tannin content. In seed selection experiments in small cages, Père David's rock squirrel (Sciurotamias davidianus), a large-bodied, strong-jawed rodent, selected all of the five seed species, and the selection order among the five seed species was determined by endocarp thickness and the ratio of endocarp mass/seed mass. In contrast, the Korean field mouse (Apodemus peninsulae) and Chinese white-bellied rat (Niviventer confucianus), with relatively small bodies and weak jaws, preferred to select small seeds like acorns of Q. liaotungensis and seeds of P. armeniaca, indicating that rodent body size is also an important factor affecting food selection based on seed size. These results suggest endocarp thickness significantly reduces seed removal speed by rodents and then negatively affects dispersal fitness of seeds before seed removal of tree species in the study region. However, effect of endocarp thickness on final dispersal fitness needs further investigation because it may increase seed caching and survival after seed removal.  相似文献   

2.
Primary and secondary seed dispersal was investigated for the glacier lily Erythronium grandiflorum in the Colorado Rocky Mountains. These heavy seeds have no obvious adaptations for biotic or abiotic dispersal, but can be thrown short distances when the dehiscent fruits are shaken by wind. We used sticky traps to measure primary transport of seeds up to 1 m away from individual plants. A seed cafeteria experiment examined the role of ants and rodents in secondary seed transport. Primary dispersal by wind was positively skewed and median transport distances were influenced by variation in plant height. Secondary dispersal was negligible compared to Viola nuttallii, an elaiosome-bearing species. Thus, seed dispersal was highly restricted in E. grandiflorum, and a 1 m radius encompassed the modal section of the seed dispersal curve. The seed dispersal component of gene flow was quantified and combined with previous measurements of pollen flow to yield a more complete estimate of Wright's neighborhood size, N e, for E. grandiflorum. The lack of a special seed dispersal mechanism in E. grandiflorum is discussed in terms of a source-sink model for seedling establishment with respect to distance from the parental plants.  相似文献   

3.
The relationship of variations in parental body size to offspring survival has been studied in a population of poor socio-economic conditions (“Barriada”) in the southern highland of Peru. Parents of small body size, especially mothers, had significantly greater per cent offspring survival than parents with larger body size. In other words, the offspring survival effectiveness of subjects of small body size was greater than that of subjects of large body size. It is postulated that the greater offspring survival effectiveness associated with small parental body size may reflect possible adaptive responses to poor socio-economic conditions.  相似文献   

4.
High variation in seed size, as is common among angiosperms, may be maintained in a plant species when several factors select for seed size. Variation may also result from differences among adult plants, such as nutrient and water availability or the amount of photosynthetic tissue. In a study of Sabal palmetto seed ecology I found high seed size variation both within- and among-palms, and investigated possible factors maintaining this variation. Seed size was positively correlated with the number of leaves on parent palms. Larger seeds produced more vigorous seedlings that had greater leaf length, area, and mass, and greater root mass. Caryobruchus gleditsiae (Bruchidae: Coleoptera), whose larvae develop within palm seeds, preferentially oviposited on larger seeds, which in turn produced larger beetle offspring. By choosing the largest seeds available, ovipositing beetles thus affect both the quantity and the quality of seeds available for recruitment. I conclude that because beetle predation selects against large seeds, while larger seeds promote seedling vigor, the maintenance of seed size variation may be an adaptation of S. palmetto promoting both seed escape from predators and seedling vigor.  相似文献   

5.
Håkan Sand 《Oecologia》1996,106(2):212-220
I examined the relationship between age, body size and fecundity in 833 female moose (Alces alces) from 14 populations in Sweden sampled during 1989–1992. Data on population density, food availability and climatic conditions were also collected for each population. Age and body mass were both significantly positively related to fecundity, measured as ovulation rate, among female moose. The relationship between the probability of ovulation and body mass was dependent on age with (1) a higher body mass needed in younger females for attaining a given fecundity, and (2) body mass having a stronger effect on fecundity in yearling (1.5 year) than in older (2.5 year) females. Thus, a 40 kg increase in yearling body mass resulted in a 42% increase in the probability of ovulation as compared to a 6% increase in older females. The lower reproductive effort per unit body mass, and the relatively stronger association between fecundity and body mass in young female moose compared to older ones, is likely to primarily represent a mechanism that trades off early maturation against further growth, indicating a higher cost of reproduction in young animals. In addition to age and body mass, population identity explained a significant amount of the individual variation in fecundity, showing that the relationship between body mass and fecundity was variable among populations. This variation was in turn related to the environment, in terms of climatic conditions forcing female moose living in relatively harsh/more seasonal climatic conditions to attain a 22% higher body mass to achive the same probability of multiple ovulation (twinning) as females living in climatically milder/less seasonal environments. The results suggests that the lower fecundity per unit body mass in female moose living in climatically harsh/more seasonal environments may be an adaptive response to lower rates of juvenile survival, compared to females experiencing relatively milder/less seasonal climatic conditions.  相似文献   

6.
Abstract.
  • 1 Despite apparent directional sexual selection in favour of large body size, males of the anthophorine bee Centris pallida remain highly variable in body size.
  • 2 One possible cause of persistent size variation among males is geographic variation in the extent of the large male mating advantage. However, a study of a population in an area not previously investigated revealed that the large male mating advantage was as strong here as it has been elsewhere in other years.
  • 3 Although the reproductive benefits of being large were consistent in populations separated spatially and temporally, the intensity of bird predation on mate-searching males varied greatly between locations.
  • 4 The bee-killing birds focused exclusively on bees which were digging down to meet emerging females or fighting on the ground, never on flying males. Males which were collected on the ground by hand (to simulate avian predation) were significantly larger on average than flying males collected by sweep netting.
  • 5 Therefore, in some location in some years, sexual selection in favour of large body size may be opposed by natural selection exerted by predators, perhaps contributing to the maintenance of size variation in this bee.
  相似文献   

7.
  总被引:2,自引:0,他引:2  
Comparisons between closely related species in different habitats provide a window into understanding how biotic factors shape evolutionary pathways. Weevils in the genus Curculio have radiated extensively across the Palearctic, where similar ecomorphs have evolved independently on different hosts. We examined ecological and morphological data for 31 Curculio species using multivariate statistics to determine which morphological traits covary and which correlate with the host seed size. A subset of 15 taxa for which phylogenetic relationships were known were used for comparative analyses and inferring historical patterns of trait evolution. The morphological analyses suggest rostrum size increased proportionately to body size in both males and females and that both rostrum and body size correlate with host seed size but that rostrum shape does not correlate with any of the seed traits used in the analyses. Host shifts from small seeds to considerably larger seeds or vice versa have occurred several times independently and historical trait evolution indicates that these host shifts were accompanied by morphological changes in rostrum size. These patterns suggest that seed size is an important selective agent for changes in rostrum length along with body size and thus may be a key factor promoting morphological differentiation in the genus Curculio.  相似文献   

8.
Seed size is an important plant fitness trait that can influence several steps between fruiting and the establishment of a plant’s offspring. Seed size varies considerably within many plant species, yet the relevance of the trait for intra-specific fruit choice by primates has received little attention. Primates may select certain seed sizes within a species for a number of reasons, e.g. to decrease indigestible seed load or increase pulp intake per fruit. Olive baboons (Papio anubis, Cercopithecidae) are known to select seed size in unripe and mature pods of Parkia biglobosa (Mimosaceae) differentially, so that pods with small seeds, and an intermediate seed number, contribute most to dispersal by baboons. We tested whether olive baboons likewise select for smaller ripe seeds within each of nine additional fruit species whose fruit pulp baboons commonly consume, and for larger seeds in one species in which baboons feed on the seeds. Species differed in fruit type and seed number per fruit. For five of these species, baboons dispersed seeds that were significantly smaller than seeds extracted manually from randomly collected fresh fruits. In contrast, for three species, baboons swallowed seeds that were significantly longer and/or wider than seeds from fresh fruits. In two species, sizes of ingested seeds and seeds from fresh fruits did not differ significantly. Baboons frequently spat out seeds of Drypetes floribunda (Euphorbiaceae) but not those of other plant species having seeds of equal size. Oral processing of D. floribunda seeds depended on seed size: seeds that were spat out were significantly larger and swallowed seeds smaller, than seeds from randomly collected fresh fruits. We argue that seed size selection in baboons is influenced, among other traits, by the amount of pulp rewarded per fruit relative to seed load, which is likely to vary with fruit and seed shape.  相似文献   

9.
Svensson  Jan-Erik 《Hydrobiologia》1997,344(1-3):155-161
An enclosure experiment was performed to test for direct predationeffects on fecundity and adult body size of the copepod Eudiaptomus gracilis in the field. By introducing a high densityof fish (15 underyearling roach, Rutilus rutilus, per 350litre enclosure) and documenting the short-term effects on traitsin a rapidly decreasing prey population, responses to changes inthe phytoplankton community were minimized. After 68 hours ofpredation, clutch size and frequency of females carrying eggs weresignificantly lower in fish enclosures. Female density was moreaffected than male density. Predation selected against large bodysize in both sexes but less so in females, leading to an increasedsexual size dimorphism. The results agree with predictions based onprey selectivity in fish. Predation risk should increase withclutch size and body size since these traits increase theconspicuousness of prey. The size of the highly visible egg-clutchmay be more important than body size. Female body size wasuncorrelated to clutch size, which may explain the weaker sizeeffect among females and the changed sexual sizedimorphism.  相似文献   

10.
    
Aphidophagous insects all exploit aphids as food, but there appears to be no association between the size of the aphidophagous predator and that of the species or the age structure of the aphid colonies they exploit. Aphid colonies generally increase, peak and decline in abundance, and are exploited by a sequence of predators, which is consistent from year to year. The objective of this study was to determine the rules underlying this temporal pattern. For example, in the field, aphid colonies are often first attacked by a small and then a larger species of ladybird. Theory based on the geometry and physiology of ladybirds predicts that the quantity of food required for oviposition and the area searched per unit time should scale with body weight, with exponents of 1 and 0.66, respectively. An analysis of empirical data supports these predictions. Thus, in relative terms a 35 mg ladybird requires 1.5 times more aphids per unit area for oviposition than a 10 mg ladybird. That is, the temporal pattern in oviposition is possibly mainly determined by geometrical and physiological constraints associated with body size, with small species of ladybird able to lay eggs at lower aphid population densities than large species. Cannibalism is thought to be the mechanism by which these predators are able to coexist.  相似文献   

11.
    
Abstract . Aquatic invertebrates experience strong trade-offs between habitats due to the selective effects of different predators. Diel vertical migration and small body size are thought to be effective strategies against fish predation in lakes. In the absence of fish in small ponds, migration is ineffective against invertebrate predators and large body size is an advantage. Although widely discussed, this phenomenon has never been tested in a phylogenetic context. We reconstructed a mitochondrial DNA (mtDNA) tree to investigate the phylogenetic distribution of pond and lake lifestyles among 10 species of northern temperate Chaoborus midge larvae. The mtDNA tree is similar to previous morphological trees for Chaoborus , the only difference being the disruption of the subgenus Chaoborus sensu stricto. At least three shifts have occurred between pond and lake lifestyles, each time associated with evolution of diel vertical migration in the lake taxon. The trend in larval body size with habitat type is sensitive to tree and character reconstruction methods, only weakly consistent with the effects of fish predation. Despite long time periods over which adaptation to each habitat type could have occurred, there remains significant phylogenetic heritability in larval body size. The tree provides a framework for comparative studies of the metapopulation genetic consequences of pond and lake lifestyles.  相似文献   

12.
We examined the seed rain throughout a twelve month period in a lowlandtropical forest in Cameroon, West Africa, 1996–97. Traps (0.5m2, n = 216) were erected throughout a 25km2 area in 24 randomly placed clusters of nine trapseach. Fruits and seeds that landed in traps were collected every 7–10daysand classified by species and dispersal type. More than 32,000 seeds fromapproximately 200 species fell into the traps, an average of 297 seedsm–2 yr–1 Thirty species represent 82%of the total seed rain while an additional 175 species comprise the remaining18%. When we compared the adult community to the seed rain community within thesame plots, we found no apparent correlation between seed rain patterns andadult community structure for this year of study. Furthermore, only 49% of theadult tree community produced and dispersed seed into traps in this year. Morethan 100 species (52%) found in the seed rain represented long-distanceimmigrant seed rain. Seed rain was highly variable at several scales, bothspatially and seasonally, although seeds arrived in traps during eachcollectionperiod. Cluster analyses showed that traps within plots were seldom moresimilarto one another than traps between plots. While 82% of the tree species in thecommunity are thought to be animal dispersed, only 28% of all seeds that fellinto traps had been obviously handled (bitten, chewed, or passed)by animals. Tests for fruit and seed removal by predators or dispersers found5%or less removal rate from traps.  相似文献   

13.
    
BackgroundEvidence suggests that birth weight may be associated with colorectal cancer (CRC) risk later in life. Whether the association is mediated by adult body size remains unexamined.MethodCox proportional hazards models (Hazard Ratio (HR) and 95 % Confidence Intervals (CI)) were used to evaluate the association between self-reported birth weight (<6 lbs, 6-<8 lbs, ≥8 lbs) and CRC risk among 70,397 postmenopausal women from the Women’s Health Initiative. Further, we assessed whether this association was mediated by adult body size using multiple mediation analyses.ResultsCompared with birth weights of 6-< 8 lbs, birth weight ≥ 8 lbs was associated with higher CRC risk in postmenopausal women (HR = 1.31, 95 % CI 1.16–1.48). This association was significantly mediated by adult height (proportion mediated =11.4 %), weight (11.2 %), waist circumference (10.9 %), and body mass index at baseline (4.0 %). The joint effect of adult height and weight explained 21.6 % of this positive association.ConclusionOur data support the hypothesis that the intrauterine environment and fetal development may be related to the risk of developing CRC later in life. While adult body size partially explains this association, further investigation is required to identify other factors that mediate the link between birth weight and CRC.  相似文献   

14.
  总被引:3,自引:0,他引:3  
A cenogram is a rank‐ordered body size distribution of non‐predatory terrestrial mammal species within a community. Studies of cenograms for modern faunas have shown that certain quantifiable attributes of cenograms are correlated with environmental variables such as rainfall and vegetation structure. Based on these correlations, cenograms of fossil communities have been used to infer palaeoenvironments and palaeoenvironmental variables. The present study uses cenogram statistics to interpret palaeoenvironmental conditions for eight Cenozoic South American mammal faunas, ranging from Eocene to Pleistocene in age. Body sizes for fossil taxa were taken either from the literature or were estimated using regressions of body size on molar length (or femoral bicondylar width) for modern mammals. Cenogram statistics are calculated for the eight fossil faunas and compared to similar statistics calculated for 16 modern South American mammal faunas, allowing palaeoenvironmental interpretations to be made. The palaeoenvironmental interpretations based on cenogram analyses sometimes support and sometimes contradict interpretations based on herbivore craniodental morphology (e.g. levels of hypsodonty). Simulations of expected errors in body size estimates for fossil taxa suggest that the discrepancies do not result primarily from erroneous body size estimates. It is possible that some of the incongruity in interpretations results from certain non‐analogue attributes of South American faunas during much of the Cenozoic (e.g. the relatively depauperate mammalian predator diversity prior to the Great American Biotic Interchange).  相似文献   

15.
Stillwell RC  Fox CW 《Oecologia》2007,153(2):273-280
Sexual size dimorphism is widespread in animals but varies considerably among species and among populations within species. Much of this variation is assumed to be due to variance in selection on males versus females. However, environmental variables could affect the development of females and males differently, generating variation in dimorphism. Here we use a factorial experimental design to simultaneously examine the effects of rearing host and temperature on sexual dimorphism of the seed beetle, Callosobruchus maculatus. We found that the sexes differed in phenotypic plasticity of body size in response to rearing temperature but not rearing host, creating substantial temperature-induced variation in sexual dimorphism; females were larger than males at all temperatures, but the degree of this dimorphism was smallest at the lowest temperature. This change in dimorphism was due to a gender difference in the effect of temperature on growth rate and not due to sexual differences in plasticity of development time. Furthermore, the sex ratio (proportion males) decreased with decreasing temperature and became female-biased at the lowest temperature. This suggests that the temperature-induced change in dimorphism is potentially due to a change in non-random larval mortality of males versus females. This most important implication of this study is that rearing temperature can generate considerable intraspecific variation in the degree of sexual size dimorphism, though most studies assume that dimorphism varies little within species. Future studies should focus on whether sexual differences in phenotypic plasticity of body size are a consequence of adaptive canalization of one sex against environmental variation in temperature or whether they simply reflect a consequence of non-adaptive developmental differences between males and females.  相似文献   

16.
    
Summary The water balance of three different sized coexisting species of heteromyid rodents (Dipodomys merriami ca. 39 g;Perognathus fallax ca. 23 g;Perognathus longimembris ca. 9 g) was assessed while consuming two different diets (either wheat or hulled sunflower) at ambient temperatures of 15–30°C. The metabolism of wheat as the sole food source was calculated to provide a greater metabolic water production (MWP) than the consumption of sunflower seed because of their different composition. The state of water balance was assessed by measuring urine concentrations and body weight maintenance on each diet at each temperature. Both measures showed that (i) all species were able to maintain a more positive water on the higher MWP seed, (ii) for all species there was an ambient temperature above which water balance could no longer be maintained, (iii) that this temperature was higher with the higher MWP food source and (iv) water regulatory efficiency was negatively correlated with body mass.Dipodomys showed a reduced digestive efficiency compared toPerognathus. When presented with both seedsDipodomys showed no preference for either seed irrespective of the state of water balance whilst thePerognathus species showed a tendency for an increased preference for the high MWP food source at the higher ambient temperatures. The ecological implications of these findings are discussed.  相似文献   

17.
  总被引:2,自引:0,他引:2  
1. Mating and foraging are generally mutually exclusive activities. Individuals are thus faced with a continuous trade-off between time and energy expended in foraging and mating, but different phenotypes should respond to this trade-off in different ways. 2. Sexual selection theory predicts that females should maximize their time and energy spent gathering resources, whereas males should maximize their time and energy spent obtaining mates, thus minimizing their time spent foraging, subject to the constraint that they need to forage minimally to sustain their activity. 3. Smaller individuals require less food to maintain their activity. Small males in particular could therefore increase mating effort at the expense of foraging effort and, all else being equal, may thus enjoy a time budget advantage relative to large males. On the other hand, larger individuals may compensate by being more efficient at finding prey and/or extracting nutrients. 4. The effects of sex, body size, and prey density on foraging time budgets of male and female yellow dung flies, Scathophaga stercoraria, were investigated in the laboratory. 5. Higher prey density (Drosophila melanogaster) resulted in reduced feeding (= handling) and hunting (= waiting or search) times for both sexes, as predicted by the marginal value theorem applied to foraging theory. Females fed longer on a prey item than did males, and also caught the next prey item more quickly. Large individuals extracted nutrients more quickly, but were not faster at catching prey. Small individuals satiated more quickly than larger individuals and also ate fewer prey items. 6. These results are largely consistent with the predictions and suggest a small-male time budget advantage in the yellow dung fly. Integrating the various predictions to test directly for a small-male time budget advantage is difficult in the laboratory, however, because hunting times are unlikely to reflect the natural situation. To what extent these results lead to increased probabilities for small males of obtaining matings in the field remains to be demonstrated.  相似文献   

18.
Rodents of the family Heteromyidae are proficient gatherers and hoarders of seeds. A major component of their adaptive specialization for harvesting and transporting seeds is their spacious, fur-lined cheek pouches. Precise measurements of cheek pouch capacities are essential if ecologists are to understand the foraging ecology, possible constraints on locomotion patterns, and competitive relationships of heteromyid rodents. To measure the size of these cheek pouches and the rate at which animals load seeds into their pouches during seed harvest, we attracted 56 individuals representing ten species of heteromyid rodents to bait stations in the field and allowed them to fill their cheek pouches with seeds several times while we observed and timed the events with the aid of night-vision equipment. The largest load taken by each individual was used as an estimate of its cheek pouch capacity. At the end of observations, each subject was captured and its mass and other data gathered. The allometric relationship between cheek pouch capacity and body mass for ten species of heteromyids was significant [pouch capacity (ml) = 0.148 body mass (g)0.992, r 2=0.91, P<0.0001]. The regression coefficient is ≈1.0, which indicates that the volume of the cheek pouches scales in direct proportion to body size. When the data were subdivided into quadrupeds (Perognathus and Chaetodipus) and bipeds (Dipodomys) (n=5 for each), the relationships between pouch capacity and body mass were significant, but the two regressions were not significantly different from each other. When all loads (full and partial) were considered, subjects filled their cheek pouches an average of 93 ± 10% of pouch capacity (n=185). Cheek pouch capacities from published studies of artificially filled pouches of heteromyids in the laboratory averaged about 40% below the field measurements obtained here. The allometric relationship between mean loading rate and body mass was also significant [seeds/s=1.067 bodymass (g)0.830, r 2=0.85,P=0.0011), but when quadrupeds and bipeds were considered separately, the relationships were not significant. Seed densities and bulk densities were used to calculate packing coefficients for seed species, which, when used in conjunction with the allometric relationship between cheek pouch capacity and body size, can be used to estimate the maximum load carried by a heteromyid. Except for the very largest kangaroo rat species, a full pouch load of Indian ricegrass seeds represents less than the daily energy requirements of an active heteromyid. Received: 3 March 1997 / Accepted: 15 July 1997  相似文献   

19.
    
The island rule states that small mammals isolated on islands have the evolutionary tendency to become larger, while large mammals tend to become smaller. However, the underlying mechanisms and life history consequences of these insular shifts in body size still remain speculative. The aim of this study was to investigate whether an arboreal mammal, the edible dormouse (Glis glis), showed shifts in body size when inhabiting isolated forest fragments. We analysed a data set of 541 individuals captured between 2005 and 2010 in four different forest fragments and one continuous forest, which served as a reference area. Sex, age, body mass, and size of all individuals were known. We used linear mixed-effect models to investigate whether individuals differed in their body size and mass between forest fragments and continuous forest. Our study revealed that edible dormice inhabiting forest fragments were significantly larger and heavier than individuals in the continuous forest, in accordance with patterns described by the island rule for small mammals. Because edible dormice frequently use nest boxes to rest during the day and to rear offspring, the life history strategies of this rodent can be easily investigated under evolutionary relevant conditions in the field. Thus the edible dormouse represents an excellent model organism for studying the mechanisms underlying shifts in body size as a response to habitat fragmentation and to investigate the consequences of these shifts on their life history strategies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号