首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gene encoding the DNA methyltransferase M.CviRI from Chlorella virus XZ-6E was cloned and expressed in Escherichia coli. M.CviRI methylates adenine in TGCA sequences. DNA containing the M.CviRI gene was sequenced and a single open reading frame of 1137 bp was identified which could code for a polypeptide of 379 amino acids with a predicted molecular weight of 42,814. Comparison of the M.CviRI predicted amino acid sequence with another Chlorella virus and 14 bacterial adenine methyltransferases revealed extensive similarity to the other Chlorella virus enzyme.  相似文献   

2.
Many isolates of the Aeromonas species produce amonabactin, a phenolate siderophore containing 2,3-dihydroxybenzoic acid (2,3-DHB). An amonabactin biosynthetic gene (amoA) was identified (in a Sau3A1 gene library of Aeromonas hydrophila 495A2 chromosomal DNA) by its complementation of the requirement of Escherichia coli SAB11 for exogenous 2,3-DHB to support siderophore (enterobactin) synthesis. The gene amoA was subcloned as a SalI-HindIII 3.4-kb DNA fragment into pSUP202, and the complete nucleotide sequence of amoA was determined. A putative iron-regulatory sequence resembling the Fur repressor protein-binding site overlapped a possible promoter region. A translational reading frame, beginning with valine and encoding 396 amino acids, was open for 1,188 bp. The C-terminal portion of the deduced amino acid sequence showed 58% identity and 79% similarity with the E. coli EntC protein (isochorismate synthetase), the first enzyme in the E. coli 2,3-DHB biosynthetic pathway, suggesting that amoA probably encodes a step in 2,3-DHB biosynthesis and is the A. hydrophila equivalent of the E. coli entC gene. An isogenic amonabactin-negative mutant, A. hydrophila SB22, was isolated after marker exchange mutagenesis with Tn5-inactivated amoA (amoA::Tn5). The mutant excreted neither 2,3-DHB nor amonabactin, was more sensitive than the wild-type to growth inhibition by iron restriction, and used amonabactin to overcome iron starvation.  相似文献   

3.
A gene library for Clostridium acetobutylicum NCIB 2951 was constructed in the broad-host-range cosmid pLAFR1, and cosmids containing the beta-galactosidase gene were isolated by direct selection for enzyme activity on X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactoside) plates after conjugal transfer of the library to a lac deletion derivative of Escherichia coli. Analysis of various pSUP202 subclones of the lac cosmids on X-Gal plates localized the beta-galactosidase gene to a 5.1-kb EcoRI fragment. Expression of the Clostridium beta-galactosidase gene in E. coli was not subject to glucose repression. By using transposon Tn5 mutagenesis, two gene loci, cbgA (locus I) and cbgR (locus II), were identified as necessary for beta-galactosidase expression in E. coli. DNA sequence analysis of the entire 5.1-kb fragment identified open reading frames of 2,691 and 303 bp, corresponding to locus I and locus II, respectively, and in addition a third truncated open reading frame of 825 bp. The predicted gene product of locus I, CbgA (molecular size, 105 kDa), showed extensive amino acid sequence homology with E. coli LacZ, E. coli EbgA, and Klebsiella pneumoniae LacZ and was in agreement with the size of a polypeptide synthesized in maxicells containing the cloned 5.1-kb fragment. The predicted gene product of locus II, CbgR (molecular size, 11 kDa) shares no significant homology with any other sequence in the current DNA and protein sequence data bases, but Tn5 insertions in this gene prevent the synthesis of CbgA. Complementation experiments indicate that the gene product of cbgR is required in cis with cbgA for expression of beta-galactosidase in E. coli.  相似文献   

4.
5.
The purpose of this study was to clone the carocin S1 gene and express it in a non-carocin-producing strain of Erwinia carotovora. A mutant, TH22-10, which produced a high-molecular-weight bacteriocin but not a low-molecular-weight bacteriocin, was obtained by Tn5 insertional mutagenesis using H-rif-8-2 (a spontaneous rifampin-resistant mutant of Erwinia carotovora subsp. carotovora 89-H-4). Using thermal asymmetric interlaced PCR, the DNA sequence from the Tn5 insertion site and the DNA sequence of the contiguous 2,280-bp region were determined. Two complete open reading frames (ORF), designated ORF2 and ORF3, were identified within the sequence fragment. ORF2 and ORF3 were identified with the carocin S1 genes, caroS1K (ORF2) and caroS1I (ORF3), which, respectively, encode a killing protein (CaroS1K) and an immunity protein (CaroS1I). These genes were homologous to the pyocin S3 gene and the pyocin AP41 gene. Carocin S1 was expressed in E. carotovora subsp. carotovora Ea1068 and replicated in TH22-10 but could not be expressed in Escherichia coli (JM101) because a consensus sequence resembling an SOS box was absent. A putative sequence similar to the consensus sequence for the E. coli cyclic AMP receptor protein binding site (-312 bp) was found upstream of the start codon. Production of this bacteriocin was also induced by glucose and lactose. The homology search results indicated that the carocin S1 gene (between bp 1078 and bp 1704) was homologous to the pyocin S3 and pyocin AP41 genes in Pseudomonas aeruginosa. These genes encode proteins with nuclease activity (domain 4). This study found that carocin S1 also has nuclease activity.  相似文献   

6.
The genome of the archaeal virus phiCh1, infecting Natrialba magadii (formerly Natronobacterium magadii), is composed of 58.5 kbp linear ds DNA. Virus particles contain several RNA species in sizes of 100-800 nucleotides. A fraction of phiCh1 genomes is modified within 5'-GATC-3' and related sequences, as determined by various restriction enzyme digestion analyses. High performance liquid chromatography revealed a fifth base, in addition to the four nucleosides, which was identified as N6-methyladenosine. Genetic analyses and subsequent sequencing led to the identification of a DNA (N6-adenine) methyltransferase (mtase) gene. The protein product was designated M.phiCh1-I. By the localization of the most conserved motifs (a DPPY motif occurring before FxGxG), the enzyme was placed within the beta-subgroup of the (N6-adenine) methyltransferase class. The mtase gene of phiCh1 was classified as a 'late' gene, as determined by measuring the kinetics of mRNA and protein expression in N. magadii during the lytic cycle of phiCh1. After infection of cells, M.phiCh1-I mRNA and protein could be detected in lower amounts than in the situation of virus induction from lysogenic cells. Consequently, only about 5% of the phiCh1 progeny genomes after infection of N. magadii carry the M.phiCh1-I methylation in contrast to 50% of virus genomes generated by induction of phiCh1-lysogenic N. magadii cells. Heterologous expression of the mtase from a halophile with 3 M cytoplasmic salt concentration showed an unexpected feature: the protein was active in the low environment of Escherichia coli and was able to methylate DNA in vivo. Interestingly, it seemed to exhibit a higher sequence specificity in E. coli that resulted in adenine methylation exclusively in the sequence 5'-GATC-3'. Additionally, expression of M.phiCh1-I in dam- E. coli cells led to a complete substitution of the function of M.Dam in DNA mismatch repair.  相似文献   

7.
A novel gene encoding a cytosine-5-DNA methyltransferase recognizing the dinucleotide GpC was cloned from Chlorella virus NYs-1 and expressed in both Escherichia coli and Saccharomyces cerevisiae . The gene was sequenced and a predicted polypeptide of 362 amino acids with a molecular weight of 41.903 kDa was identified. The protein contains several amino acid motifs with high similarity to those of other known 5-methylcytosine-forming methyltransferases. In addition, this enzyme, named M. Cvi PI, shares 66% identity and 76% similarity with M. Cvi JI, the only other cytosine-5-DNA methyltransferase cloned from a Chlorella virus. The short, frequently occurring recognition sequence of the new methyltransferase will be very useful for in vivo chromatin structure studies in both yeast and higher organisms.  相似文献   

8.
We previously identified a Pseudomonas sp. strain, ADP, which rapidly metabolized atrazine in liquid culture, agar plates, and soils (R. T. Mandelbaum, D. L. Allan, L. P. Wackett, Appl. Environ. Microbiol. 61:1451-1457, 1995). In this study, we report the cloning and partial characterization of a gene region from Pseudomonas sp. strain ADP that encodes atrazine degradation activity. A 22-kb EcoRI genomic DNA fragment, designated pMD1, was shown to encode atrazine dechlorination activity in Escherichia coli DH5 alpha. Atrazine degradation was demonstrated by a zone-clearing assay on agar medium containing crystalline atrazine and by chromatographic methods. A gene conferring the atrazine-clearing phenotype was subsequently subcloned as a 1.9-kb AvaI fragment in pACYC184, designated pMD4, and was expressed in E. coli. This result and random Tn5 mutagenesis established that the 1.9-kb AvaI fragment was essential for atrazine dechlorination. High-pressure liquid and thin-layer chromatographic analyses were used to rigorously establish that E. coli containing pMD4 degraded atrazine and accumulated hydroxyatrazine. Hydroxyatrazine was detected only transiently in E. coli containing pMD1. This is consistent with the idea that hydroxyatrazine is the first metabolite in atrazine degradation by Pseudomonas sp. strain ADP. A 0.6-kb ApaI-PstI fragment from pMD4, containing the putative atrazine chlorohydrolase gene, hybridized to DNA from atrazine-degrading bacteria isolated in Switzerland and Louisiana.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Sixteen independent Azorhizobium sesbaniae ORS571 vector insertion (Vi) mutants defective in ammonium assimilation (Asm-) were selected; genomic DNA sequences flanking the insertion endpoints were cloned directly. Resulting recombinant plasmids were used to identify, by hybridization, corresponding wild-type DNA sequences from an A. sesbaniae lambda EMBL3 genomic library (lambda Asm phages). All 16 Asm- Vi mutants physically mapped to a single genomic locus. Plasmid subclones of recombinant phage lambda Asm152 were able to complement both Escherichia coli gltB and A. sesbaniae Asm- Vi mutants; NADPH-glutamate synthase activity was detected in all such strains complemented to Asm+. Heterologous and homologous complementations required both A. sesbaniae gltA+ and (inferred) gltB+ genes. Eleven A. sesbaniae Asm- Vi mutants mapped to a 4-kilobase-pair (kbp) DNA region that exhibited homology with Bacillus subtilis gltA+. In E. coli maxicell labeling experiments, this 4-kbp DNA region encoded a 165-kilodalton polypeptide that was inferred to be the product of the A. sesbaniae gltA+ gene (glutaminase NADPH-dependent L-glutamate synthase subunit). Site-directed Tn5-lacZ mutagenesis of a glt plasmid subclone identified a region that bisected this locus into (at least) two cistrons. Because the remaining five A. sesbaniae Asm- mutants mapped to a 1.5-kbp region adjacent to gltA+, these mutants probably define a single gltB+ gene (glutamate dehydrogenase NADPH-dependent L-glutamate synthase subunit); this region did not exhibit homology with the B. subtilis gltB+ gene.  相似文献   

10.
Organization of the adenyl cyclase (cya) locus of Rhizobium meliloti   总被引:2,自引:0,他引:2  
  相似文献   

11.
We have cloned a 13 kb Escherichia coli DNA fragment which complemented the rfe mutation to recover the biosynthesis of E. coli O9 polysaccharide. Using Tn5 insertion inactivation, the rfe gene was localized at the 1.5 kb HindIII-EcoRI region flanking the rho gene. We constructed an rfe-deficient E. coli K-12 mutant by site-directed inactivation using a DNA fragment of the cloned 1.5 kb rfe gene. This also confirmed the presence of the rfe gene in the 1.5 kb region. By simultaneous introduction of both the rfe plasmid and the plasmid of our previously cloned E. coli O9 rfb into this rfe mutant, we succeeded in achieving in vivo reconstitution of O9 polysaccharide biosynthesis. From sequence analysis of the rfe gene, a putative promoter followed by an open reading frame (ORF) was identified downstream of the rho gene. This ORF coincided with the position of the rfe gene determined by Tn5 analysis and site-directed mutagenesis. Furthermore, we identified the rff genes in the 10.5 kb DNA flanking the rfe gene. We recognized at least two functional domains on this cloned rff region. Region I complemented a newly found K-12 rff mutant, A238, to synthesize the enterobacterial common antigen (ECA). Deletion of region II resulted in the synthesis of ECAs with shorter sugar chains. When the 10.5 kb rff genes of the plasmid were inactivated by either deletion or Tn5 insertion, the plasmid lost its ability to give rise to transformants of the rfe mutants.  相似文献   

12.
Nodulation by the Rhizobium strain IC3342 causes a leaf curl syndrome in certain tropical legumes such as pigeon pea (Cajanus cajan) (N.M. Upadhyaya, J.V.D.K. Kumar Rao, D.S. Letham, and P.J. Dart, Physiological and Molecular Plant Pathology 39:357-373, 1991). Transposon (Tn5) mutagenesis of this leaf curl-inducing (Curl+) Rhizobium strain yielded two Curl- Fix- and three Curl- Fix+ mutants. Plasmid visualization and subsequent Southern blot hybridization analyses with Tn5, nif and nod gene probes showed that the Tn5 element had inserted into the symbiotic (Sym) plasmid in three of the mutants. Restriction endonuclease analyses indicated that none of the Tn5 insertions were closely linked. Tn5-containing EcoRI fragments were cloned from each mutant and used as probes to isolate the corresponding wild-type DNA fragments from a cosmid (pLAFR3) genomic library. Fix+ and/or Curl+ phenotypes were restored in each mutant by the introduction of cosmids containing the corresponding wild-type DNA. A closely related but Curl- Rhizobium strain ANU240 was shown, by Southern hybridization, to contain conserved DNA sequences of all but one of the identified genetic regions of the Curl+ Rhizobium strain IC3342. Cosmids containing the genetic region unique to the strain IC3342, designated lcr1, conferred a Curl+ phenotype on the strain ANU240. DNA sequence analysis of the cloned lcr1 region revealed five open reading frames (ORFs). The ORF2 showed homology with the Escherichia coli regulatory gene ompR, and ORF4 showed homology with E. coli and Rhizobium meliloti regulatory genes fnr and fixK, respectively.  相似文献   

13.
14.
From a collection of kanamycin-resistant mutants of Escherichia coli K-12 isolated by transposon Tn5 mutagenesis, we have identified a mutant that lacks functional biodegradative threonine dehydratase (EC 4.2.1.16) by direct enzyme assay and by the loss of cross-reacting material with affinity-purified antibodies against the purified enzyme. Aerobic and anaerobic growth of this strain on various carbon sources failed to reveal a phenotype. Evidence for the insertional inactivation of threonine dehydratase by Tn5 was obtained by cloning the DNA segments flanking the Tn5 insertion site into pBR322 and hybridizing the cloned DNA to a synthetic oligodeoxynucleotide probe complementary to the DNA segment coding for a unique hexapeptide at the amino terminus end of the enzyme; the region of homology to the synthetic cDNA sequence appears to be located within about 500 nucleotides from one end of Tn5. Genetic analysis with the transposon element that caused insertional inactivation located the tdc gene at min 67 on the E. coli chromosome.  相似文献   

15.
16.
17.
18.
H Hchler  S P Cohen    S B Levy 《Journal of bacteriology》1991,173(17):5532-5538
Stable chromosomal multiple-antibiotic-resistant (Mar) mutants of Escherichia coli, derived by exposing susceptible cells to low concentrations of tetracycline or chloramphenicol, express cross-resistance to structurally unrelated antibiotics. The entire resistance phenotype is reversed to susceptibility by insertion of transposon Tn5 into a locus, designated marA, near 34 min on the chromosome (A. M. George and S. B. Levy, J. Bacteriol. 155:541-548, 1983). Strains in which 39 kbp of chromosomal DNA, including marA, had been deleted were unable to produce Mar mutants. The deletion strain could be complemented in trans by introduction of intact marA+ on plasmid F'506. Junction fragments from a strain containing marA::Tn5 were cloned, exploiting kanamycin resistance on Tn5 for selection. They were used as probes to search a phasmid library of E. coli K-12 for recombinants containing the marA+ region. Two phasmids which contained regions hybridizing to this probe were identified and shown to complement delta marA in a deletion strain. From one phasmid, several marA-containing fragments were cloned: those of greater than or equal to 7.8 kbp restored the ability to form Mar mutants in a deletion strain. These Mar mutants were shown to be dependent on the cloned marA fragment. Chromosomal as well as recombinant Mar mutants showed increased expression of a marA-specific mRNA species of about 1.4 kb, which was barely or not detectable in wild-type strains. Exposure of mutants and, to a lesser extent, parental strains to tetracycline or chloramphenicol resulted in elevated levels of mRNA which hybridized to the marA probe. These results indicate that the marA locus is needed for production of Mar mutants and is regulated, responding to at least two antibiotics to which it controls resistance.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号