共查询到20条相似文献,搜索用时 0 毫秒
1.
Self-ligating RNA sequences on the antigenome of human hepatitis delta virus. 总被引:3,自引:17,他引:3
下载免费PDF全文

A 179-base fragment of RNA from the 1,679-base antigenome of hepatitis delta virus can not only self-cleave but, when the ends of the resultant fragments are brought into apposition by base pairing to another RNA, also self-ligate. Thus, processing events needed for genome replication in vivo may be strictly RNA mediated. 相似文献
2.
For some time it has been known that the RNA genome of human hepatitis delta virus (HDV) undergoes a specific RNA editing event. This review describes the editing phenomenon and its potential biological significance, and evaluates the data regarding the mechanism involved, including the possible relationship to other RNA editing phenomena. 相似文献
3.
In vitro-synthesized hepatitis delta virus RNA initiates genome replication in cultured cells. 总被引:5,自引:11,他引:5
下载免费PDF全文

Monomers of the genomic strand of hepatitis delta virus RNA were transcribed in vitro and then delivered to NIH 3T3 fibroblasts by using a liposome fusion technique. After 7 days, genome replication was detected, but only in fibroblasts that stably expressed the delta antigen. Sequence analysis of the replicated products identified them as faithful copies of the hepatitis delta virus genome found in virions. 相似文献
4.
RNA conformational requirements of self-cleavage of hepatitis delta virus RNA. 总被引:13,自引:0,他引:13
下载免费PDF全文

Hepatitis delta virus (HDV) RNA subfragments undergo self-cleavage at varying efficiencies. We have developed a procedure of using repeated cycles of heat denaturation and renaturation of RNA to achieve a high efficiency of cleavage. This effect can also be achieved by gradual denaturation of RNA with heat or formamide. These results suggest that only a subpopulation of the catalytic RNA molecules assumes the active conformation required for self-cleavage. This procedure could be of general use for detecting catalytic RNA activities. 相似文献
5.
6.
7.
8.
9.
Human hepatitis delta virus (HDV) RNA has been shown to contain a self-catalyzed cleavage activity. The sequence requirement for its catalytic activity appears to be different from that of other known ribozymes. In this paper, we define the minimum contiguous sequence and secondary structure of the HDV genomic RNA required for the catalytic activity. By using nested-set deletion mutants, we have determined that the essential sequence for the catalytic activity is contained within no more than 85 nucleotides of HDV RNA. These results are in close agreement with the previous determinations and confirmed the relative insignificance of the sequence at the 5' side of the cleavage site. The smallest catalytic RNA, representing HDV genomic RNA nucleotide positions 683 to 770, was used as the basis for studying the secondary structure requirements for catalytic activity. Analysis of the RNA structure, using RNase V1, nuclease S1 and diethylpyrocarbonate treatments showed that this RNA contains at least two stem-and-loop structures. Other larger HDV RNA subfragments containing the catalytic activity also have a very similar secondary structure. By performing site-specific mutagenesis studies, it was shown that one of the stem-and-loop structures could be deleted to half of its original size without affecting the catalytic activity. In addition, the other stem-and-loop contained a six base-pair helix, and the structure, rather than the sequence, of this helix was required for the catalytic activity. However, the structure of a portion of the stem-and-loop remains uncertain. We also report that this RNA can be divided into two separate molecules, which alone did not have cleavage activity but, when mixed, one of the RNAs could be cleaved in trans. This study thus reveals some features of the secondary structure of the HDV genomic RNA involved in self-catalyzed cleavage. A model of this RNA structure is presented. 相似文献
10.
11.
Susceptibility of human hepatitis delta virus RNAs to small interfering RNA action 总被引:6,自引:0,他引:6
下载免费PDF全文

In animal cells, small interfering RNAs (siRNA), when exogenously provided, have been reported to be capable of inhibiting replication of several different viruses. In preliminary studies, siRNA species were designed and tested for their ability to act on the protein expressed in Huh7 cells transfected with DNA-directed mRNA constructs containing hepatitis delta virus (HDV) target sequences. The aim was to achieve siRNA specific for each of the three RNAs of HDV replication: (i) the 1,679-nucleotide circular RNA genome, (ii) its exact complement, the antigenome, and (iii) the less abundant polyadenylated mRNA for the small delta protein. Many of the 16 siRNA tested gave >80% inhibition in this assay. Next, these three classes of siRNA were tested for their ability to act during HDV genome replication. It was found that only siRNA targeted against HDV mRNA sequences could interfere with HDV genome replication. In contrast, siRNA targeted against genomic and antigenomic RNA sequences had no detectable effect on the accumulation of these RNAs. Reconstruction experiments with nonreplicating HDV RNA sequences support the interpretation that neither the potential for intramolecular rod-like RNA folding nor the presence of the delta protein conferred resistance to siRNA. In terms of replicating HDV RNAs, it is considered more likely that the genomic and antigenomic RNAs are resistant because their location within the nucleus makes them inaccessible to siRNA-mediated degradation. 相似文献
12.
Functional domains of delta antigens and viral RNA required for RNA packaging of hepatitis delta virus.
下载免费PDF全文

The functions of delta antigens (HDAgs) in the morphogenesis of hepatitis delta virus (HDV) have been studied previously. The C terminus of large HDAg has been shown to complex with the small surface antigen (HBsAg) of helper hepatitis B virus, whereas the assembly of small HDAg requires interaction with the N terminus of large HDAg (M.-F. Chang, C.-J. Chen, and S. C. Chang, J. Virol. 68:646-653, 1994). To further examine the molecular mechanisms by which HDAgs are involved in the assembly of HDV RNA, we have cotransfected Huh-7 cells with plasmids representing a longer than unit-length HDV and the small HBsAg cDNAs. We found that HDAg mRNA could be generated from an endogenous promoter within the HDV cDNA that was translated into large HDAg. Large HDAg is capable of complexing with monomeric HDV genomic RNA to form ribonucleoprotein particles (RNPs) and is capable of forming enveloped HDV-like particles in the presence of small HBsAg without undergoing HDV replication. In addition, the middle region from amino acid residues 89 to 145 of large HDAg is required for assembly of the RNPs but is dispensable for assembly of the enveloped particles. RNA assembly is also demonstrated with small HDAg when it is cotransfected with a packaging-defective large HDAg mutant and small HBsAg. Leu-115 within the putative helix-loop-helix structure of the small HDAg is important for the replication of HDV but is not essential for RNA assembly, suggesting that conformational requirements of small HDAg for replication and assembly of viral RNA may be different. Further studies indicate that a 312-nucleotide linear HDV RNA from one end of the HDV and structure is sufficient to form RNP complexes competent for assembly of virus-like particles with large HDAg and small HBsAg. 相似文献
13.
14.
15.
16.
Mutagenesis analysis of the self-cleavage domain of hepatitis delta virus antigenomic RNA.
下载免费PDF全文

To determine the sequence requirements and structural features of the self-cleavage domain of hepatitis delta virus (HDV) antigenomic RNA, we constructed a series of mutants and measured the rate constant of the cleavage reaction for each. The self-cleavage activity of HDV RNA of antigenomic sense was found to reside in a region of less than 90 nucleotides in length. The catalytic domain contained a long complementary sequence which could be deleted to half of its original size. Moreover, this region could be replaced by other sequences as long as they could fold into a stem-and-loop structure. The catalytic domain also required a 6-basepair helix adjacent to the cleaving point for activity. The structural features of these two base-pairing regions are quite similar to those of the HDV genomic self-cleavage domain. The cleavage site as well as the the hinge region (the sequence between the two stems) requires specific sequences for activity. 相似文献
17.
18.
Large hepatitis delta antigen is not a suppressor of hepatitis delta virus RNA synthesis once RNA replication is established
下载免费PDF全文

Moderation of hepatitis delta virus (HDV) replication is a likely prerequisite in the establishment of chronic infections and is thought to be mediated by the intracellular accumulation of large hepatitis delta antigen (L-HDAg). The regulatory role of this protein was suggested from several studies showing that cotransfection of plasmid cDNAs expressing both L-HDAg and HDV RNA results in a potent inhibition of HDV RNA replication. However, since this approach differs significantly from natural HDV infections, where HDV RNA replication is initiated from an RNA template, and L-HDAg appears only late in the replication cycle, it remains unclear whether L-HDAg can modulate HDV RNA replication in the natural HDV replication cycle. In this study, we investigated the effect of L-HDAg, produced as a result of the natural HDV RNA editing event, on HDV RNA replication. The results showed that following cDNA-free HDV RNA transfection, a steady-state level of RNA was established at 3 to 4 days posttransfection. The same level of HDV RNA was reached when a mutant HDV genome unable to make L-HDAg was used, suggesting that L-HDAg did not play a role. The rates of HDV RNA synthesis, as measured by metabolic labeling experiments, were identical at 4 and 8 days posttransfection and in the wild type and the L-HDAg-deficient mutant. We further examined the effect of overexpression of L-HDAg at various stages of the HDV replication cycle, showing that HDV RNA synthesis was resistant to L-HDAg when it was overexpressed 3 days after HDV RNA replication had initiated. Finally, we showed that, contrary to conventional thinking, L-HDAg alone, at a certain molar ratio with HDV RNA, can initiate HDV RNA replication. Thus, L-HDAg does not inherently inhibit HDV RNA synthesis. Taken together, these results indicated that L-HDAg affects neither the rate of HDV RNA synthesis nor the final steady-state level of HDV RNA and that L-HDAg is unlikely to act as an inhibitor of HDV RNA replication in the natural HDV replication cycle. 相似文献
19.
Functional motifs of delta antigen essential for RNA binding and replication of hepatitis delta virus. 总被引:2,自引:8,他引:2
下载免费PDF全文

The functions of delta antigens (HDAgs) in the replication of hepatitis delta virus (HDV) have been identified previously. The small HDAg acts as a transactivator, whereas the large HDAg has a negative effect on replication. To understand the molecular mechanisms involved in the control of HDV replication, we have established a replication system in Huh-7 cells by cotransfecting a monomeric cDNA genome of HDV and a plasmid encoding the small HDAg. We demonstrate that a leucine repeat in the middle domain of the small HDAg is involved in binding to the HDV genome and transactivation of HDV replication. When the leucine repeat was disrupted by a substitution of valine for leucine at position 115, both RNA-binding and transactivation activity of the small HDAg were abolished. In contrast, the binding and transactivation activities were not affected when Leu-37 and Leu-44 of the small HDAg were replaced by valines. In addition, small and large HDAgs can interact with each other to form protein complexes in vitro. The complex formation that may lead to the trans-dominant negative regulation of large HDAg in HDV replication is mediated by a cryptic signal located between amino acid residues 35 and 65 other than the putative N-terminal leucine zipper motif. Furthermore, an extra 21-amino-acid extension near the N terminus converts the small HDAg into a pseudo-large HDAg with negative regulation activity of HDV replication even though the extreme C-terminal residue is unchanged. 相似文献
20.
Packaging of hepatitis delta virus RNA via the RNA-binding domain of hepatitis delta antigens: different roles for the small and large delta antigens.
下载免费PDF全文

Hepatitis delta virus (HDV) is composed of four specific components. The first component is envelope protein which contains hepatitis B surface antigens. The second and third components are nucleocapsid proteins, referred to as small and large hepatitis delta antigens (HDAgs). The final component is a single-stranded circular RNA molecule known as the viral genome. In order to study the mechanism of HDV RNA packaging, a four-plasmid cotransfection system in which each viral component was provided by a separate plasmid was employed. Virus-like particles released from Huh-7 cells receiving such a cotransfection were found to contain HDV RNA along with three proteins. Therefore, the four-plasmid cotransfection system could lead to successful HDV RNA packaging in vitro. The system was then used to show that the large HDAg alone was able to achieve a low level of HDV RNA packaging. Analysis of a variety of large HDAg mutants revealed that the RNA-binding domain was essential for viral RNA packaging. By increasing the incorporation of small HDAg into virus-like particles, we found a three- to fourfold enhancement of HDV RNA packaging. This effect was probably through a direct binding of HDV RNA, independent from that of large HDAg, with the small HDAg. The subsequent RNA-protein complex was packaged into particles. The results provided insight into the roles and functional domains of small and large HDAgs in HDV RNA packaging. 相似文献