首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A tomato EST sequence, highly homologous to the human and Arabidopsis thaliana UV-damaged DNA binding protein 1 (DDB1), was mapped to the centromeric region of the tomato chromosome 2. This region was previously shown to harbor the HP-1 gene, encoding the high pigment-1 (hp-1) and the high pigment-1w (hp-1w) mutant phenotypes. Recent results also show that the A. thaliana DDB1 protein interacts both genetically and biochemically with the protein encoded by DEETIOLATED1, a gene carrying three tomato mutations that are in many respects isophenotypic to hp-1: high pigment-2 (hp-2), high pigment-2j (hp-2j) and dark green (dg). The entire coding region of the DDB1 gene was sequenced in an hp-1 mutant and its near-isogenic normal plant in the cv. Ailsa Craig background, and also in an hp-1w mutant and its isogenic normal plant in the GT breeding line background. Sequence analysis revealed a single A931-to-T931 base transversion in the coding sequence of the DDB1 gene in the hp-1 mutant plants. This transversion results in the substitution of the conserved asparagine at position 311 to a tyrosine residue. In the hp-1w mutant, on the other hand, a single G2392-to-A2392 transition was observed, resulting in the substitution of the conserved glutamic acid at position 798 to a lysine residue. The single nucleotide polymorphism that differentiates hp-1 mutant and normal plants in the cv. Ailsa Craig background was used to design a pyrosequencing genotyping system. Analysis of a resource F2 population segregating for the hp-1 mutation revealed a very strong linkage association between the DDB1 locus and the photomorphogenic response of the seedlings, measured as hypocotyl length (25<LOD score<26, R2=62.8%). These results strongly support the hypothesis that DDB1 is the gene encoding the hp-1 and hp-1w mutant phenotypes.Communicated by R. Hagemann  相似文献   

2.
ThenihB gene ofAspergillus nidulans was found to confer sensitivity to elevated concentrations of nitrite, compact morphology and absence of conidiation. ThenihB locus was allocated to linkage group II and was recessive in heterozygous diploids. When thenihB1 mutant was grown on a mixture of nitrite plus NH 4 + its sensitivity to nitrite was unchanged. A possible role for this gene in nitrite transport and/or the maintenance of membrane integrity is discussed.  相似文献   

3.
Chlamydomonas reinhardtii Dang, was grown in a chemostat culture under phosphate limitation. The steady state concentration of phosphate was below the detection limit (< 1 μg P/L) in all runs. The cellular content of phosphorus (Qp), polyphosphate (Qpp) and chlorophyll a increased with increasing dilution rate, and the growth rate of the alga was described by Qp as well as Qpp in the Droop model. The ratio Qpp/Qp and the activity of alkaline phosphatase were maximal at high and low growth rates, respectively. Palmelloids of Chlamydomonas were found at high dilution rates (D > 0.12 h?1) and became attached to the wall of the culture vessel. They differed from the vegetative stage in both chemical composition and growth rate. Their contents of phosphorus and chlorophyll a were low, as in the vegetative cells, which grew at a low growth rate, whereas the ration Qpp/Qp and the activity of alkaline phosphatase were comparable with those of fast growing vegetative cells. The growth rate of the palmelloids was 0.03 h?1 whereas maximum growth rate (μm) for the vegetative cells was 0.21 h?1.  相似文献   

4.
TheSaccharomyces cerevisiae PMR1 gene encodes a Ca2+-ATPase localized in the Golgi. We have investigated the effects ofPMR1 disruption inS. cerevisiae on the glycosylation and secretion of three heterologous glycoproteins, human α1-antitrypsin (α1-AT), human antithrombin III (ATHIII), andAspergillus niger glucose oxidase (GOD). Thepmr1 null mutant strain secreted larger amounts of ATHIII and GOD proteins per a unit cell mass than the wild type strain. Despite a lower growth rate of thepmr1 mutant, two-fold higher level of human ATHIII was detected in the culture supernatant from thepmr1 mutant compared to that of the wild-type strain. Thepmr1 mutant strain secreted α1-AT and the GOD proteins mostly as core-glycosylated forms, in contrast to the hyperglycosylated proteins secreted in the wild-type strain. Furthermore, the core-glycosylated forms secreted in thepmr1 mutant migrated slightly faster on SDS-PAGE than those secreted in themnn9 deletion mutant and the wild type strains. Analysis of the recombinant GOD with anti-α1,3-mannose antibody revealed that GOD secreted in thepmr1 mutant did not have terminal α1,3-linked mannoses unlike those secreted in themnn9 mutant and the wild type strains. The present results indicate that thepmr1 mutant, with the super-secretion phenotype, is useful as a host system to produce recombinant glycoproteins lacking high-mannose outer chains.  相似文献   

5.
The isolation and characterization of mutant alleles in a regulatory gene affecting NADP+-dependent enzymes are described. The locus,mex, is at position 26.5 ± 0.74 on the X chromosome ofDrosophila melanogaster. The newly isolated mutant allele,mex 1, is recessive to either themex allele found in Oregon-R wild-type individuals or that found in thecm v parental stock in which the new mutants were induced. Themex 1 mutant allele is associated with statistically significant decreases in malic enzyme (ME) specific activity and ME specific immunologically cross-reacting material (ME-CRM) in newly emerged adult males. During this same developmental stage in males, the NADP+-dependent isocitrate dehydrogenase specific activity increases to statistically significant levels. Females of themex 1 mutant strain show statistically significant elevated levels of the pentose phosphate shunt enzymes, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Isoelectric focusing and thermolability comparisons of the active ME from mutant and control organisms indicate that the enzyme is the same. Developmental profiles ofmex 1 and control strains indicate that this mutant allele differentially modulates the levels of ME enzymatic activity and ME-CRM during development. This work was supported by an Operating Grant from the Natural Sciences and Engineering Research Council of Canada to M.M.B.  相似文献   

6.
Catalase (CATpp) with molecular weight 223 kD was isolated from the methylotrophic yeast Pichia pastoris and purified 90-fold by ion-exchange chromatography and gel filtration. Quantitative parameters of absorption and CD spectra of CATpp solutions and of its membrane-concentrated form (CATpp-conc) were studied. Rates of H2O2 decomposition and kinetic characteristics K m and k cat of CATpp and CATpp-conc were determined in 10 mM phosphate buffer (pH 7.4) at 30°C, as well as the effective constant k in of the enzyme inactivation rate during the catalysis and the constant k 2 of the interaction rate of the Complex I catalases with H2O2. Thermal inactivation of CATpp in solutions at 45°C was characterized by the effective rate constant k in *, and the low-frequency (27 kHz) ultrasonic inactivation of CATpp at 20°C was characterized by the firstorder rate constant k in (US). All spectral and kinetic characteristics of CATpp and CATpp-conc were compared with the corresponding values for catalase from bovine liver (CAT) and for catalase from the methylotrophic yeast Candida boidinii (CATcb). All three catalases were rather similar in their spectral properties but strongly varied in their kinetic parameters, and their comparison suggests that CATpp should be the best enzyme in its overall properties as it displayed the maximal efficiency in terms of k cat/K m, thermal stability comparable with the thermal stability of CAT in terms of k in *, the minimal k in, and high stability in the ultrasonic cavitation field at the US power of 60 W/cm2.  相似文献   

7.
We have isolated several mutants ofSaccharomyces cerevisiae that are sensitive to oxidative stress in a screen for elevated sensitivity to hydrogen peroxide. Two of the sixteen complementation groups obtained correspond to structural genes encoding enzymes of the pentose phosphate pathway. Allelism of thepos10 mutation (POS forperoxidesensitivity) to thezwf1/met1 mutants in the structural gene for glucose 6-phosphate dehydrogenase was reported previously. The second mutation,pos18, was complemented by transformation with a yeast genomic library. The open reading frame of the isolated gene encodes 238 amino acids. No detectable ribulose 5-phosphate epimerase activity was found in thepos18 mutant, suggesting that the corresponding structural gene is affected in this mutant. For that reason the gene was renamedRPE1 (forribulose 5-phosphateepimerase).RPE1 was localized to chromosome X. The predicted protein has a molecular mass of 25 966 Daltons, a codon adaptation index (CAI) of 0.32, and an isoelectric point of 5.82. Database searches revealed 32 to 37% identity with ribulose 5-phosphate epimerases ofEscherichia coli, Rhodospirillum rubrum, Alcaligenes eutrophus andSolanum tuberosum. We have characterizedRPE1 by testing enzyme activities inrpe1 deletion mutants and in strains that overexpressRPE1, and compared the hydrogen peroxide sensitivity ofrpe1 mutants to that of other mutants in the pentose phosphate pathway. Interestingly, all mutants tested (glucose 6-phosphate dehydrogenase, gluconate 6-phosphate dehydrogenase, ribulose 5-phosphate epimerase, transketolase, transaldolase) are sensitive to hydrogen peroxide.  相似文献   

8.
In this paper, we describe a protocol to obtain a site-directed mutants in thepsbA gene ofChlamydomonas reinhardtii, which overcomes several drawbacks of previous protocols, and makes it possible to generate a mutant within a month. Since the large size of the gene, and the presence of four large introns has made molecular genetics of thepsbA gene rather unwieldy, we have spliced all of the exons of thepsbA gene by PCR to facilitate genetic manipulation and sequencing of the gene. The resultant construct (plasmid pBA153, with several unique restriction sites introduced at exon boundaries) carried 1.2 and 1.8 kb intact sequences from the 5- and 3-flanking regions, respectively. The plasmid was used to transform a D1-deletion mutant and was found to complement the deletion and restore photosynthetic activity. In addition, a bacterialaadA gene conferring spectinomycin resistance (spe r) was inserted downstream of the intron-freepsbA gene, to give construct pBA155. This allowed selection of mutant strains deficient in photosynthesis by using spectinomycin resistance, and eliminated the possibility of selection for revertant strains which is a consequence of having to use photosynthetic activity as a selection pressure. Finally, pBA155 was used to construct pBA157, in which additional restriction sites were inserted to facilitate cassette mutagenesis for generation of mutations in spans thought to be involved in donor-side interactions. AllpsbA deletion strains transformed with intron-freepsbA-aadA constructs encoding the wild-type D1 sequence, and screened on spectinomycin plates for thespe r phenotype, were able to grow photosynthetically, and all showed identical kinetics for electron transfer from primary (QA) to secondary quinone (QB) in Photosystem II, as assayed by the decay of the high fluorescence yield on oxidation of the reduced primary acceptor (QA ).  相似文献   

9.
Reaction of a dog kidney (Na + K)-ATPase with pyridoxal phosphate, followed by borohydride reduction, reduced the catalytic activity when measured subsequently. The time course of inactivation did not follow a first-order process, and certain characteristics of the residual enzymatic activity were modified. Moreover, various catalytic activities were diminished differently: Na-ATPase activity was largely spared, K-phosphatase activity was diminished only by half that of the (Na + K)-ATPase, whereas (Na + K)-CTPase and Na-CTPase activities were diminished more. ATP, ADP, CTP, nitrophenyl phosphate, and Pi all protected against inactivation. Increasing salt concentrations increased inactivation, but KCl slowed and NaCl hastened inactivation when compared with choline chloride. Occupancy of certain substrate or cation sites seemed more crucial than selection of conformational states. For the residual (Na + K)-ATPase activity theK 0.5 for K+ was lower and theK 0.5 for Na+ higher, while the sensitivities to ouabain, oligomycin, and dimethylsulfoxide were diminished; for the residual K-phosphatase activity theK 0.5 for K+ was unchanged, the sensitivity to ouabain and oligomycin diminished, but the stimulation by dimethylsulfoxide increased. These properties cannot be wholly accommodated by assuming merely shifts toward either of the two major enzyme conformations.  相似文献   

10.
A considerable (2-fold) stimulation of the DCCD-sensitive ATPase activity by K+ or Rb+, but not by Na+, over the range of zero to 100mM was shown in the isolated membranes ofE. coli grown anaerobically in the presence of glucose. This effect was observed only in parent and in thetrkG, but not in thetrkA, trkE, ortrkH mutants. ThetrkG or thetrkH mutant with anunc deletion had a residual ATPase activity not sensitive to DCCD. A stimulation of the DCCD-sensitive ATPase activity by K+ was absent in the membranes from bacteria grown anaerobically in the presence of sodium nitrate. Growth of thetrkG, but not of othertrk mutants, in the medium with moderate K+ activity did not depend on K+ concentration. Under upshock, K+ accumulation was essentially higher in thetrkG mutant than in the othertrk mutant. The K+-stimulated DCCD-sensitive ATPase activity in the membranes isolated from anaerobically grownE. coli has been shown to depend absolutely on both the F0F1 and theTrk system and can be explained by a direct interaction between these transport systems within the membrane of anaerobically grown bacteria with the formation of a single supercomplex functioning as a H+-K+ pump. ThetrkG gene is most probably not functional in anaerobically grown bacteria.This study was performed at the Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637.  相似文献   

11.
Recombinant strains of mice with known alleles in theI region of theH-2 complex were used to map theH-2 linked immune response genes controlling responsiveness to random terpolymers GAT10 and GL. TheIr-GAT gene was mapped to either theIA orIB subregions. In contrast, data obtained in the GL-GLT system indicated multigenic control. The responsiveness of the B10.A(3R), B10.A(5R), and B10.S(9R) recombinants indicated that one immune response gene,IrGL-GLT A, mapped to the right ofIB, i.e., in theIC subregion. The nonresponsiveness of the B10.A(1R), B10.A(2R), B10.M(17R), and AQR mice having responderIC d alleles butIA k-IB k nonresponder alleles and the positive response of a (C57BL/6 × A/J)F1 hybrid derived from two nonresponder parental strains indicated the presence of a second gene inIA-IB subregions,Ir-GL-GLT B. The interaction between these two genes, each present in a differentI subregion, controls the immune response.  相似文献   

12.
Inhibitors are very important in the study of hormone function. Brasinazole (Brz) is a specific inhibitor of brassinosteroids (BRs) biosynthesis. To expand our knowledge of the molecular mechanisms of plant steroid signaling, we performed genetic screening using medium containing Brz under dark conditions. Mutants insensitive to Brz developlonger hypocotyls than their wild type counterparts. We isolatedabz453 as a Brz insensitive mutant. TAIL-PCR and the segregation ratio of T2 plants indicated a single T-DNA insertion at the 24-Sterol C-methyltransferase (SMT2) gene in theabz453 mutant. Recapitulation for putative FCP serine phosphatase (FSP), the gene neighboringSMT2, indicated no significant phenotypes, but theSMT2 anti-sense (SMT2-AS) line developed longer hypocotyls than the wild type in medium containing Brz. Additionally, theSMT2-AS line displayed similar phenotypes to theabz453 line in soil including enhanced growth and smaller silique. Theabz453 andSMT2-AS mutants showed phenotypes similar to those of wild type in medium containing benzylaminopurine, pacrobutrazol and ACC (precursor for ethylene) under dark conditions. However, when brassinolide (BL) dose response was observed, theabz453 andSMT2-AS lines showed higher sensitivity than wild type. Theabz453/det2 andabz453/bri1-119 double mutants showed enhanced growth compared to thedet2 andbri1-119 line under both dark and light conditions. Specially, in dark conditions double mutants displayed nearly 2- and 1.5-fold longer hypocotyls thandet2 andbri1-119 plants. Brz insensitivity to theSMT2 knock-out mutant and phenotypes of double mutants indicate that not only do BRI1 and DET2 influence the BRs response, as evidenced by hypocotyl elongation, but another sterol derived signals may also be affected in mutants, suggesting that another pathway is involved in hypocotyl elongation due to SMT2.  相似文献   

13.
Metabolic flux analysis based on 13C-labeling experiments followed by the measurement of intracellular isotope distribution using both 2D NMR and GC-MS was carried out to investigate the effect of pyruvate kinase (pyk) gene knockout on the metabolism of Escherichia coli in continuous culture. In addition, the activities of 16 enzymes, and the concentrations of 5 intracellular metabolites, were measured as a function of time in batch culture as well as continuous culture. It was found that flux through phosphoenol pyruvate carboxylase and malic enzyme were up-regulated in the pykF mutant as compared with the wild type, and acetate formation was significantly reduced in the mutant. In addition, flux through the phosphofructose kinase pathway was reduced and that through the oxidative pentose phosphate (PP) pathway increased in the mutant. This was evidenced by the corresponding enzyme activities, and the increase in the concentrations of phosphoenol pyruvate, glucose-6-phosphate and 6-phosphogluconate, etc. It was also found for continuous cultivation that the enzyme activities of the oxidative PP and Entner-Doudoroff pathways increased as the dilution rate increased for the pykF mutant. To clarify the metabolism quantitatively, it was found to be quite important to integrate the information on intracellular metabolic flux distribution, enzyme activities and intracellular metabolite concentrations.  相似文献   

14.
A rice mutant,G069, characteristic of few tiller numbers, was found in anther culture progeny from theF 1 hybrid between anindica-japonica cross, Gui630×02428. The mutant has another two major features: delayed tillering development and yellowing apex and margin on the mature leaves. As a donor parent,G069 was further backcrossed with the recurrent parent,02428, for two turns to develop aBC 2F2 population. Genetic analysis in theBC 2F2 population showed that the traits of few-tillering and yellowing apex and margin on the mature leaves were controlled by one recessive gene. A pool of equally mixed genomic DNA, from few-tillering individual plants inBC 2F2, was constructed to screen polymorphism with simple sequence repeat (SSR) markers in comparison with the02428 genome. One SSR marker and three restriction fragment length polymorphism (RFLP) markers were found possibly linked with the recessive gene. By using these markers, the gene of few-tillering was mapped on chromosome 2 between RFLP marker C424 and S13984 with a genetic distance of 2.4 cM and 0.6 cM, respectively. The gene is designatedft1.  相似文献   

15.
Viability ofpetite-negative yeast, such asKluyveromyces lactis, is dependent on functional mitochondrial genome encoding essential components of both mitochondrial protein synthesizing system and oxidative phosphorylation. We have isolated several nuclear mutants impaired in mitochondrial functions that were unable to grow on non-fermentable carbon and energy sources. They were used for the isolation and molecular characterization of the three genes encoding apocytochromec, apocytochromec 1 and the protein involved in the biogenesis of cytochrome oxidase. All cytochrome-deficient mutants were viable and did not survive the ethidium bromide mutagenesis.Petite-positiveSaccharomyces cerevisiae requires intact mitochondrial genome when its phosphatidylglycerolphosphate synthase was inactivated due to mutation in thePEL1 gene. UsingPEL-lacZ fusion genes it was demonstrated that Pel1p is a mitochondrial protein (expressed in response tomyo-inositol and choline). Thepel1 mutant was deficient in phosphatidylglycerol (PG) and cardiolipin (CL) and itsrho /rho 0 mutants grew extremely slowly on complex medium with glucose. Under the same conditions the growth rate of thecrd1 rho double mutants was similar to that of its parentcrd1 mutant deficient in cardiolipin synthase and accumulating PG. The results demonstrate that thepetite negativity in yeast is not dependent on an intact respiratory chain or functional oxidative phosphorylation. The presence of the negatively charged PG or CL seems to be essential for the maintenance of specific mitochondrial functions required for the normal mitotic growth of yeast cells. Presented at theInternational Conference on Recent Problems in Microbiology and Immunology, Košice (Slovakia), 13–15 October 1999.  相似文献   

16.
Potassium channels control the repolarization of nerve terminals and thus play important roles in the control of synaptic transmission. Here we describe the effects of mutations in theslowpoke gene, which is the structural gene for a calcium activated potassium channel, on transmitter release at the neuromuscular junction inDrosophila melanogaster. Surprisingly, we find that theslowpoke mutant exhibits reduced transmitter release compared to normal. Similarly, theslowpoke mutation significantly suppresses the increased transmitter release conferred either by a mutation inShaker or by application of 4-aminopyridine, which blocks theShaker-encoded potassium channel at theDrosophila nerve terminal. Furthermore, theslowpoke mutation suppresses the striking increase in transmitter release that occurs following application of 4-aminopyridine to theether a go-go mutant. This suppression is most likely the result of a reduction of Ca2+ influx into the nerve terminal in theslowpoke mutant. We hypothesize that the effects of theslowpoke mutation are indirect, perhaps resulting from increased Ca2+ channel inactivation, decreased Na+ or Ca2+ channel localization or gene expression, or by increases in the expression or activity of potassium channels distinct fromslowpoke.  相似文献   

17.
Nakashima-Tanaka  Eiji 《Genetica》1967,38(1):447-458
The eightvestigial strains,vg, vg-co-iso,vg;se-co-iso,vg-ms-1-co-iso,vg-ms-1; 3-co-iso,vg-ms-co-iso,vg-ms;se andvg-ms;se-co-iso showed various temperature responses. The five strains of thevg-ms group showed a greater response to temperature than did the three strains of thevg group. This tendency became more pronounced the higher the temperature was. The difference in temperature response between thevg-ms-1; 3-co-iso andvg-ms-co-iso strains indicates that the phenotypic expression ofvestigial is influenced by a modifier or modifiers located on the second chromosome of the Oregon(iso) strain. It was found that the X chromosome of the Oregon(iso) strain showed a slight modifier action in females but not in males of thevg-ms mutant.These gene in thevg-ms;se strain seemed to enhance the sensitivity to heat, and to inhibit the emergence of adult flies from pupal cases at 30°C when combined with thevg-ms gene, but no interaction was seen between these gene and thevg gene. From the results of this experiment, it is assumed that thevg-ms mutant either has a new recessive allele of thevg gene, or a modifier gene(s) closely linked tovg.This work forms part of a thesis for the doctorate of Kyoto University.  相似文献   

18.
A rice mutant,G069, characteristic of few tiller numbers, was found in anther culture progeny from theF 1 hybrid between anindica-japonica cross, Gui630×02428. The mutant has another two major features: delayed tillering development and yellowing apex and margin on the mature leaves. As a donor parent,G069 was further backcrossed with the recurrent parent,02428, for two turns to develop aBC 2F2 population. Genetic analysis in theBC 2F2 population showed that the traits of few-tillering and yellowing apex and margin on the mature leaves were controlled by one recessive gene. A pool of equally mixed genomic DNA, from few-tillering individual plants inBC 2F2, was constructed to screen polymorphism with simple sequence repeat (SSR) markers in comparison with the02428 genome. One SSR marker and three restriction fragment length polymorphism (RFLP) markers were found possibly linked with the recessive gene. By using these markers, the gene of few-tillering was mapped on chromosome 2 between RFLP marker C424 and S13984 with a genetic distance of 2.4 cM and 0.6 cM, respectively. The gene is designatedft1.  相似文献   

19.
TheSaccharomyces cerevisiae geneABC1 is required for the correct functioning of thebc 1 complex of the mitochondrial respiratory chain. By functional complementation of aS. cerevisiae abc1 mutant, we have cloned aSchizosaccharomyces pombe cDNA, whose predicted product is 50% identical to the Abc1 protein. Significant homology is also observed with bacterial, nematode, and even human amino acid sequences of unknown function, suggesting that the Abc1 protein is conserved through evolution. The cloned cDNA corresponds to a singleS. pombe geneabc1Sp, located on chromosome II, expression of which is not regulated by the carbon source. Inactivation of theabc1Sp gene by homologous gene replacement causes a respiratory deficiency which is efficiently rescued by the expression of theS. cerevisiae ABC1 gene. The inactivated strain shows a drastic decrease in thebc 1 complex activity, a decrease in cytochromeaa3 and a slow growth phenotype. To our knowledge, this is the first example of the inactivation of a respiratory gene inS. pombe. Our results highlight the fact thatS. pombe growth is highly dependent upon respiration, and thatS. pombe could represent a valuable model for studying nucleo-mitochondrial interactions in higher eukaryotes.  相似文献   

20.
The line B6.M505 is congenic with C57BL/6JY and carries a mutant form of theH-2 b haplotype designatedH-2 bd . The mutant site 505 was located by the F1 tests in theK end of theH-2 gene complex. The M505 mice are histoincompatible with the B6.C(Hz1) line (haplotypeH-2 ba ) carrying another mutation in theK end ofH-2 b . Inability of M505 to complement Hz1 in tests with B6 skin grafting is considered as an evidence that the same gene was altered by both mutations. The gained H antigens of two mutants can cross-react in vivo as revealed by accelerated rejection of Hz1 skin grafts by B6 recipients presensitized with M505 spleen cells. The lost antigenic determinants are not identical as shown by accelerated rejection of B6 skin grafts by Hz1 hosts preimmunized with M505 spleen cells. Absorptions of the antiserum ASY-015, (d×a) anti-i, anti-H-2.33 with M505 spleen cells did not clear forH-2 i ,H-2 b andH-2 ba , and absorptions with Hz1 did not clear forH-2 i ,H-2 b , andH-2 bd . These results show that changes of histocompatibility determinants may be accompanied by loss of some haptenic determinants in the Hz1 and M505 mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号