首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
目的:筛选高致病禽流感病毒核蛋白(NP)中可用于高致病禽流感病毒感染检测或疫苗设计的CTL表位,为评价疫苗接种效果和开发新型疫苗奠定基础。方法:根据NCBI公布的NP的核苷酸序列设计特异性引物,以2006年深圳株高致病禽流感H5N1病人分离的病毒cDNA为模板扩增NP全长基因(1500 bp)并测序。通过生物信息学方法,预测NP氨基酸序列中潜在的HLA-A觹0201限制性表位。构建重组pJW4303-NP核酸疫苗并肌肉免疫HLA-A2/DP4转基因小鼠,利用ELISPOT法筛选特异性CTL表位。结果:克隆了2006年深圳株高致病禽流感NP基因,构建的重组pJW4303-NP核酸疫苗能在体外COS-7细胞中表达,免疫小鼠后能引起小鼠产生特异性的体液免疫和细胞免疫。结论:生物信息学和转基因小鼠模型筛选相结合的方法,能用于高致病性禽流感核蛋白CTL表位的筛选。  相似文献   

2.
目的 预测与鉴定烟曲霉抗原Asp f16的HLA-A *0201限制性CD8+细胞毒性T细胞(CTL)抗原表位.方法 以国人常见的HLA-A*0201位点为靶点,依据生物信息学软件扫描烟曲霉特异性抗原Asp f16的全部427个氨基酸序列.使用HLA-A *0201转基因小鼠制备骨髓来源的树突状细胞(DC)和CTL.流式细胞仪技术检测DC表面MHC Ⅱ类抗原,CD80,CD86和CD11c的表达来验证其是否成熟.ELISPOT试验检测烟曲霉抗原多肽特异性CTL产生的细胞因子IFN-γ.四聚体(Tetramer)试验证实烟曲霉特异性CTL与抗原肽,HLA-A*0201分子复合体的亲和性.结果 根据与MHC I类分子结合的半衰期评分,选择了3个HLA-A*0201限制性抗原表位.流式细胞仪分析示成熟DC高表达HLA Ⅱ类抗原,CD80,CD86和CD11c.Tetramer试验证实烟曲霉特异性T细胞受体与抗原肽,HLA-A*0201分子复合体的高亲和性.ELISPOT实验结果 表明烟曲霉抗原肽体外可以活化CD8+CTL,被负载了抗原肽的DC刺激活化后可以产生IFN-γ.结论 本研究成功鉴定烟曲霉抗原Asp f16的HLA-A*0201限制性CD8+CTL表位,可作为疫苗设计的候选表位,为进一步研发新型抗烟曲霉疫苗提供参考.  相似文献   

3.
为了筛选和确定用于检测表达HIV-1 B’/C亚型病毒6种抗原(gp160、gag、polr、evt、at和nef)的艾滋病疫苗免疫小鼠后H-2d限制的特异性T细胞表位,本研究使用表达上述6种抗原的复制型DNA疫苗和非复制型重组痘苗病毒疫苗联合免疫BALB/c小鼠,通过矩阵设计将HIV-1 B(C)亚型6种相应抗原全序列肽库分别混合成肽池,使用肽池对免疫小鼠进行IFN-γELISPOT检测,根据检测结果确定肽库中特异反应的优势表位肽。结果显示:筛选到七条针对Gag的特异表位肽,其中有5条与文献报道相同,另2条为新表位肽;筛选到3条针对Pol蛋白特异表位肽,其中一条为新表位肽;筛选到2条针对gp160特异表位肽,其中一条为新表位肽;在Nef肽库中筛选到一条新的表位肽;从Tat肽库中筛选到3条表位肽,这三条肽在肽库中是连续的序列,都包含(或部分包含)网上公布的表位序列;在Rev肽库中没有筛选到能够产生阳性反应的特异性表位肽。本研究使用IFN-γELISPOT方法筛选和确定了可用于检测表达HIV-1 B’/C亚型病毒6种抗原(gp160、gag、pol、revt、at和nef)的艾滋病疫苗免疫小鼠后H-2d限制的特异性T细胞表位。  相似文献   

4.
目的:研究汉滩病毒(HTNV)核蛋白细胞毒性T淋巴细胞(CTL)表位肽联合不同免疫佐剂免疫C57BL/6小鼠后的免疫学特性,确立一种免疫效果良好的多肽免疫C57BL/6小鼠方案。方法:分别用氢氧化铝、弗氏佐剂和脂质体作为免疫佐剂与汉滩病毒核衣壳蛋白上的CTL表位肽段混合,经皮下注射免疫C57BL/6小鼠,共免疫3次,每次间隔2周;免疫结束后分离小鼠脾细胞,并分别采用ELISPOT和CTL杀伤试验进行检测。结果:HTNV核蛋白CTL表位肽联合弗氏佐剂加脂质体组小鼠脾细胞分泌IFN-γ能力和CTL杀伤能力优于其他各实验组(P0.01)。结论:HTNVCTL表位肽联合弗氏佐剂加脂质体免疫C57BL/6小鼠效果最佳,可为HTNV多肽疫苗的免疫策略提供参考。  相似文献   

5.
戊型肝炎病毒衣壳蛋白内包含一个强H-2d限制性Th表位P34。以该表位肽免疫BALB/c鼠,其脾细胞能够在体外识别重组戊型肝炎病毒衣壳蛋白,剔除实验表明应答细胞几乎完全是CD4+ T细胞,证明P34表位肽能有效诱导产生特异性Th细胞。以P34肽初免小鼠,再以包含该表位的重组戊型肝炎病毒抗原(E2)免疫,结果表明,10μg、 20μg E2免疫组在免疫后第1周即有部分小鼠产生抗体,到第3周所有小鼠均能够产生抗体;而对照肽P18初免的小鼠,以20μg E2加强免疫亦无法诱导小鼠产生抗体。这表明,Th表位肽P34初免诱导产生的Th细胞能够有效促进小鼠对携带该表位的载体蛋白的体液免疫应答。  相似文献   

6.
戊型肝炎病毒衣壳蛋白内包含一个强H-2d限制性Th表位P34。以该表位肽免疫BALB/c鼠,其脾细胞能够在体外识别重组戊型肝炎病毒衣壳蛋白,剔除实验表明应答细胞几乎完全是CD4 T细胞,证明P34表位肽能有效诱导产生特异性Th细胞。以P34肽初免小鼠,再以包含该表位的重组戊型肝炎病毒抗原(E2)免疫,结果表明,10μg、20μgE2免疫组在免疫后第1周即有部分小鼠产生抗体,到第3周所有小鼠均能够产生抗体;而对照肽P18初免的小鼠,以20μgE2加强免疫亦无法诱导小鼠产生抗体。这表明,Th表位肽P34初免诱导产生的Th细胞能够有效促进小鼠对携带该表位的载体蛋白的体液免疫应答。  相似文献   

7.
为了获得人N-甲基-D-天冬氨酸受体(NR)主亚基(NR1)M3-M4环B细胞表位,以人NR1分子M3-M4环单克隆抗体MAB363淘筛噬菌体展示随机12肽库,对筛选克隆进行特异性ELISA检测和竞争结合实验分析.从30个克隆中得到一个阳性克隆序列“VHTNPSTWQPIL”(克隆1),原核表达的NR1 M3-M4环可以与克隆1竞争结合MAB363.固相合成5个表位探针短肽,发现其中只有R(22)LRNPSKD可以与M3-M4环竞争结合抗体,将NPS三个氨基酸残基逐一敲除,缺失N或NP的合成肽和M3-M4环竞争抗体的能力减弱,缺失NPS的合成肽完全没有竞争能力,证明MAB363的表位为NPS,S可能是关键性残基.上述结论为免疫干预防治兴奋毒性脑损害策略的实施提供了一个重要线索和依据.  相似文献   

8.
传染性法氏囊病病毒五个抗原表位短肽的鉴定与序列分析   总被引:3,自引:0,他引:3  
以5株传染性法氏囊病病毒(Infectious bursal disease virus,IBDV)单克隆抗体HNF1、HNF7、B34、2B1和2G8作为筛选分子,对噬菌体展示12肽库进行3轮"吸附-洗脱-扩增"淘洗,从每株单克隆抗体筛选到的噬菌斑中随机挑取12个单克隆蓝色噬菌斑,合计60个,用间接ELISA检测,A值大于1.00;用竞争抑制ELISA分析,单克隆抗体和IBDV抗原均能竞争抑制筛选12肽与固相包被单克隆抗体的反应,抑制率大于40%,表明在该12肽内含有IBDV抗原表位.选取35个单克隆噬菌斑,测定噬菌体gⅢ部分基因的核苷酸序列,确定了这5个含有不同IBDV抗原表位12肽的核苷酸和氨基酸序列.进一步将其与GenBank中IBDV基因组编码蛋白的氨基酸序列进行比较,发现2B1筛选肽有4个连续氨基酸残基Leu-Ala-Ser-Pro与IBDV基因组A片段编码多聚蛋白的第536-599氨基酸残基一致,推测2B1为线性表位;而HNF1、HNF7、B34和2G8筛选肽均没找到有3个以上连续氨基酸残基与IBDV蛋白序列相同之处,推测可能是构象依赖性表位.  相似文献   

9.
传染性法氏囊病病毒五个抗原表位短肽的鉴定与序列分析   总被引:1,自引:0,他引:1  
以5株传染性法氏囊病病毒(Infectious bursal disease virus,IBDV)单克隆抗体HNF1、HNF7、B34、2B1和2G8作为筛选分子,对噬菌体展示12肽库进行3轮"吸附-洗脱-扩增"淘洗,从每株单克隆抗体筛选到的噬菌斑中随机挑取12个单克隆蓝色噬菌斑,合计60个,用间接ELISA检测,A值大于1.00;用竞争抑制ELISA分析,单克隆抗体和IBDV抗原均能竞争抑制筛选12肽与固相包被单克隆抗体的反应,抑制率大于40%,表明在该12肽内含有IBDV抗原表位。选取35个单克隆噬菌斑,测定噬菌体gIII部分基因的核苷酸序列,确定了这5个含有不同IBDV抗原表位12肽的核苷酸和氨基酸序列。进一步将其与GenBank中IBDV基因组编码蛋白的氨基酸序列进行比较,发现2B1筛选肽有4个连续氨基酸残基Leu-Ala-Ser-Pro与IBDV基因组A片段编码多聚蛋白的第536-599氨基酸残基一致,推测2B1为线性表位;而HNF1、HNF7、B34和2G8筛选肽均没找到有3个以上连续氨基酸残基与IBDV蛋白序列相同之处,推测可能是构象依赖性表位。  相似文献   

10.
本文利用噬菌体随机9肽库探索汉滩病毒(HTNV)核衣壳蛋白(NP)B细胞抗原表位。以抗HTNV NP单克隆抗体(mAb)5H5作为筛选分子,生物淘洗噬菌体递呈的随机9肽库。阳性克隆经夹心ELISA、竞争ELISA鉴定后,随机挑取10个克隆,DNA测序,与HTNV76-118株S基因进行同源性分析。结果显示筛选到的噬菌体能特异地与5H5结合,这种结合可被天然抗原所抑制。10个克隆的氨基酸序列相同,均为VRDAEEQYE,与76-118株NP氨基端的aa25-33一致。证实了该线性表位是mAb 5H5识别的表位,噬菌体肽库有助于病毒抗原表位的确定。  相似文献   

11.
The nucleoprotein (NP) of influenza A virus is the dominant antigen recognized by influenza virus-specific cytotoxic T lymphocytes (CTLs), and adoptive transfer of NP-specific CTLs protects mice from influenza A virus infection. BALB/c mouse cells (H-2d) recognize a single Kd-restricted CTL epitope of NP consisting of amino acids 147 to 155. In the present study, mice were immunized with various vaccinia virus recombinant viruses to examine the effect of the induction of primary pulmonary CTLs on resistance to challenge with influenza A/Puerto Rico/8/34 virus. The minigene ESNP(147-155)-VAC construct, composed of a signal sequence from the adenovirus E3/19K glycoprotein (designated ES) and expressing the 9-amino-acid NP natural determinant (amino acids 147 to 155) preceded by an alanine residue, a similar minigene NP(Met 147-155)-VAC lacking ES, and a full-length NP-VAC recombinant of influenza virus were analyzed. The two minigene NP-VAC recombinants induced a greater primary pulmonary CTL response than the full-length NP-VAC recombinant. However, NP-specific CTLs induced by immunization with ESNP(147-155)-VAC did not decrease peak virus titer or accelerate clearance of virus in the lungs of mice challenged intranasally with A/PR/8/34. Furthermore, NP-specific CTLs induced by immunization did not protect mice challenged intranasally with a lethal dose of A/PR/8/34. Sequence analysis of the NP CTL epitope of A/PR/8/34 challenge virus obtained from lungs after 8 days of replication in ESNP(147-155)-VAC-immunized mice showed identity with that of the input virus, demonstrating that an escape mutant had not emerged during replication in vivo. Thus, in contrast to adoptively transferred CTLs, pulmonary NP-specific CTLs induced by recombinant vaccinia virus immunization do not have protective in vivo antiviral activity against influenza virus infection.  相似文献   

12.
DNA immunization offers a novel means to induce cellular immunity in a population with a heterogeneous genetic background. An immunorecessive cytotoxic T-lymphocyte (CTL) epitope in influenza virus nucleoprotein (NP), residues 218 to 226, was identified when mice were immunized with a plasmid DNA encoding a full-length mutant NP in which the anchor residues for the immunodominant NP147-155 epitope were altered. Mice immunized with wild-type or mutant NP DNA were protected from lethal cross-strain virus challenge, and the protection could be adoptively transferred by immune splenocytes, indicating the role of cell-mediated immunity in the protection. DNA immunization is capable of eliciting protective cellular immunity against both immunodominant and immunorecessive CTL epitopes in the hierarchy seen with virus infection.  相似文献   

13.
Intramuscular injection of BALB/c mice with a DNA plasmid encoding nucleoprotein (NP) from influenza virus A/PR/8/34 (H1N1) provides cross-strain protection against lethal challenge with influenza virus A/HK/68 (H3N2). CTL specific for the H-2Kd-restricted epitope NP147-155 are present in these mice and are thought to play a role in the protection. To assess the effectiveness of NP DNA immunization in comparison with influenza virus infection in the induction of CTL responses, we monitored the frequency of CTL precursors (CTLp) in mice following i.m. injection with NP DNA or intranasal infection with influenza virus and showed that the CTLp frequency in NP DNA-immunized mice can reach levels found in mice that had been infected with influenza virus. We also measured the CTLp frequency, anti-NP Ab titers, and T cell proliferative responses in mice that were injected with titrated dosages of NP DNA and documented a correlation of the CTLp frequency and the Ab titers, but not proliferative responses, with the injection dose. Furthermore, we observed a positive correlation between the frequency of NP147-155 epitope-specific CTLp and the extent of protective immunity against cross-strain influenza challenge induced by NP DNA injection. Collectively, these results and our early observations from adoptive transfer experiments of in vitro activated lymphocytes from NP DNA-immunized mice suggest a protective function of NP-specific CTLp in mice against cross-strain influenza virus challenge.  相似文献   

14.
流感病毒表面抗原血凝素( hemagglutinin,HA)是流感核酸疫苗重要的靶抗原,针对HA的保护性中和抗体主要由HA上的五个抗原表位诱导产生.在本文中,我们构建了一种以新甲型H1N1流感病毒HA1为骨架的含2个A/PR/8( H1N1)流感病毒HA抗原表位和3个新甲型H1N1流感病毒HA抗原表位的核酸疫苗,并在B...  相似文献   

15.
Viruses can exploit a variety of strategies to evade immune surveillance by cytotoxic T lymphocytes (CTL), including the acquisition of mutations in CTL epitopes. Also for influenza A viruses a number of amino acid substitutions in the nucleoprotein (NP) have been associated with escape from CTL. However, other previously identified influenza A virus CTL epitopes are highly conserved, including the immunodominant HLA-A*0201-restricted epitope from the matrix protein, M1(58-66). We hypothesized that functional constraints were responsible for the conserved nature of influenza A virus CTL epitopes, limiting escape from CTL. To assess the impact of amino acid substitutions in conserved epitopes on viral fitness and recognition by specific CTL, we performed a mutational analysis of CTL epitopes. Both alanine replacements and more conservative substitutions were introduced at various positions of different influenza A virus CTL epitopes. Alanine replacements for each of the nine amino acids of the M1(58-66) epitope were tolerated to various extents, except for the anchor residue at the second position. Substitution of anchor residues in other influenza A virus CTL epitopes also affected viral fitness. Viable mutant viruses were used in CTL recognition experiments. The results are discussed in the light of the possibility of influenza viruses to escape from specific CTL. It was speculated that functional constraints limit variation in certain epitopes, especially at anchor residues, explaining the conserved nature of these epitopes.  相似文献   

16.
Zhao J  Huang Q  Wang W  Zhang Y  Lv P  Gao XM 《Journal of virology》2007,81(11):6079-6088
By using a series of overlapping synthetic peptides covering 98% of the amino acid sequence of the nucleocapsid protein (NP) of severe acute respiratory syndrome coronavirus (SARS-CoV), four helper T-cell (Th) epitopes (NP11, residues 11 to 25; NP51, residues 51 to 65; NP61, residues 61 to 75; and NP111, residues 111 to 125) in C57BL mice (H-2(b)), four (NP21, residues 21 to 35; NP91, residues 91 to 105; NP331, residues 331 to 345; and NP351, residues 351 to 365) in C3H mice (H-2(k)), and two (NP81, residues 81 to 95; and NP351, residues 351 to 365) in BALB/c mice (H-2(d)) have been identified. All of these peptides were able to stimulate the proliferation of NP-specific T-cell lines or freshly isolated lymph node cells from mice immunized with recombinant NP. Immunization of mice with synthetic peptides containing appropriate Th epitopes elicited strong cellular immunity in vivo, as evidenced by delayed-type hypersensitivity. Priming with the helper peptides (e.g., NP111 and NP351) significantly accelerated the immune response induced by recombinant NP, as determined by the production of NP-specific antibodies. When fused with a conserved neutralizing epitope (SP1143-1157) from the spike protein of SARS-CoV, NP111 and NP351 assisted in the production of high-titer neutralizing antibodies in vivo. These data provide useful insights regarding immunity against SARS-CoV and have the potential to help guide the design of peptide-based vaccines.  相似文献   

17.
BALB/3T3 cells infected with a retroviral vector encoding the influenza virus nucleoprotein (NP) gene are efficiently lysed by CTL generated in BALB/c mice (H-2d background). Cells transduced with a mutant form of NP which contains a frameshift mutation at its NH2 terminus (NPm) do not express biochemically detectable levels of protein but nevertheless present Ag to CTL with high efficiency. Cold target inhibition studies indicate that the same CTL epitope(s) are recognized in cells harboring NP or NPm. L929 cells transduced with the NPm gene also present Ag efficiently to CTL raised in C3H mice (H-2k background). Cells engineered to express 5- to 15-fold lower levels of wild-type NP were not capable of presenting Ag to CTL, arguing against the notion that CTL are able to lyse cells expressing very low levels of Ag which might have resulted from suppression of the frameshift mutation in NPm. Implications to the mechanism of epitope generation in class I MHC-restricted immune responses are considered.  相似文献   

18.
By using a series of overlapping synthetic peptides that cover more than 95% of the amino acid sequence of nucleoprotein (NP) of influenza A/NT/60/68 virus, five Th cell epitopes in B10.S (H-2s), BALB/c (H-2d), CBA (H-2k), and B6 (H-2b) mice have been identified. The specificity of Th cell recognition of epitopes is largely dependent on the H-2 haplotype of the responding mouse strain. However, two out of the five Th epitopes defined could be recognized by mice of more than one haplotype, implying that the primary sequence of protein antigens could also influence the selection of dominant T cell epitopes by the immune system. Immunization of B10.S mice with peptide 260-283 generated strong Th cell response against type A influenza viruses. In the other three strains of mice tested, priming with helper peptides induced a stronger antipeptide than antiviral T cell response. However, the low responsiveness to virus in these mice could be partially overcome by immunization with a mixture of several helper peptides. The Th epitopes are defined by the ability of the peptides to stimulate class II MHC restricted CD4+ T cells to proliferate and to produce IL-2 in vitro. When compared with the known epitopes on NP recognised by class I restricted CD8+ cytotoxic T cells, it appears that Th and cytotoxic T cell epitopes are nonoverlapping. The AMPHI and Motifs methods were employed to analyze the sequence of NP and predict the potential dominant sites in the molecule. The predictions are compared with the experimental data obtained and the implications discussed.  相似文献   

19.
Conventional influenza vaccines need to be designed and manufactured yearly. However, they occasionally provide poor protection owing to antigenic mismatch. Hence, there is an urgent need to develop universal vaccines against influenza virus. Using nucleoprotein(NP) and extracellular domain of matrix protein 2(M2e) genes from the influenza A virus A/Beijing/30/95(H3N2), we constructed four recombinant vaccinia virus-based influenza vaccines carrying NP fused with one or four copies of M2e genes in different orders. The recombinant vaccinia viruses were used to immunize BALB/C mice. Humoral and cellular responses were measured, and then the immunized mice were challenged with the influenza A virus A/Puerto Rico/8/34(PR8). NP-specific humoral response was elicited in mice immunized with recombinant vaccinia viruses carrying full-length NP, while robust M2e-specific humoral response was elicited only in the mice immunized with recombinant vaccinia viruses carrying multiple copies of M2e. All recombinant viruses elicited NP-and M2e-specific cellular immune responses in mice. Only immunization with RVJ-4M2eNP induced remarkably higher levels of IL-2 and IL-10 cytokines specific to M2e. Furthermore, RVJ-4M2eNP immunization provided the highest cross-protection in mice challenged with 20 MLD_(50) of PR8. Therefore, the cross-protection potentially correlates with both NP and M2e-specific humoral and cellular immune responses induced by RVJ-4M2eNP, which expresses a fusion antigen of full-length NP preceded by four M2e repeats. These results suggest that the rational fusion of NP and multiple M2e antigens is critical toward inducing protective immune responses, and the 4M2eNP fusion antigen may be employed to develop a universal influenza vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号