首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The morphological characteristics of intercalary heterochromatin (IH) are compared with those of other types of silenced chromatin in the Drosophila melanogaster genome: pericentric heterochromatin (PH) and regions subject to position effect variegation (PEV). We conclude that IH regions in polytene chromosomes are binding sites of silencing complexes such as PcG complexes and of SuUR protein. Binding of these proteins results in the appearance of condensed chromatin and late replication of DNA, which in turn may result in DNA underreplication. IH and PH as well as regions subject to PEV have in common the condensed chromatin appearance, the localization of specific proteins, late replication, underreplication in polytene chromosomes, and ectopic pairing.  相似文献   

5.
6.
7.
John Locke 《Genetica》1993,92(1):33-41
Position effect variegation in Drosophila melanogaster is associated with the inability of certain genes to be correctly expressed in a proportion of cells, giving a mosaic phenotype. The lack of expression is thought to be due to alterations in the gene's chromatin structure due to its proximity to a region of heterochromatin. Because of the difficulties involved, there is little biochemical data to support the intuitively appealing model of heterochromatin spreading used to explain this phenomenon.Differences in restriction fragment length were used to distinguish DNA regions from either normal (non-position affected) or rearranged (position affected) chromosomes so as to examine possible changes in gene copy number and the effects of endogenous nucleases. DNA sequences at the breakpoint of In (1)w m4, which variegates for the white gene, were assayed under conditions where the chromatin conformation was altered using second site modifier mutations (Su(var) or En(var)). No change in the DNA sequerice copy number was observed at either chromosome breakpoint, relative to wild type, when either suppressor or enhancer mutations were present. Therefore copy number change, through differential polyploidization or somatic gene loss, is not affected by Su(var) or En(var) induced changes in the chromatin conformation.Initial experiments showed a gross difference in the sensitivity of DNA to endogenous nucleases that appeared associated with Su(var) and En(var) mutations. En(var) mutation bearing samples appeared delayed in the digestion, relative to Su(var). This differential sensitivity seemed to be genome-wide as there was no detectable difference between either breakpoint of In(1)w m4 or the sequences on the homologous w - chromosome. However, after isogenizing the genetic background, the previously noted difference between the Su(var) and En(var) mutations was eliminated. In studies dealing with nuclease digestion of chromatin, the isogenization of genetic background is essential before meaningful comparisons can be made.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号