首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
c—fos表达与心理应激脑机制的研究   总被引:13,自引:0,他引:13  
近年来,c-fos 表达作为脑细胞激活的标志,已广泛应用于心理应激脑机制的研究,并已取得了相当的进展。根据目前的认识,本文讨论了以下几个问题:(1)与心理应激有关的脑区及其与促皮质激素释放激素作用的关系;(2)室旁核中c-fos表达与CRF的关系;(3)杏核与CRF系统;(4)CRF系统的其它研究;(5)心理应激的非CRF系统。  相似文献   

2.
Glucocorticoids (GC) and mineralocorticoids (MC) have profound regulatory effects upon the central nervous system (CNS). Hormonal regulation affects several molecules essential to CNS function. First, evidences are presented that mRNA expression of the 3 and β1-subunits of the Na,K-ATPase are increased by GC and physiological doses of MC in a region-dependent manner. Instead, high MC doses reduce the β1 isoform and enzyme activity in amygdaloid and hypothalamic nuclei, an effect which may be related to MC control of salt appetite. The 3-subunit mRNA of the Na,K-ATPase is also stimulated by GC in motoneurons of the injured spinal cord, suggesting a role for the enzyme in GC neuroprotection. Second, we provide evidences for hormonal effects on the expression of mRNA for the neuropeptide arginine vasopressin (AVP). Our data show that GC inhibition of AVP mRNA levels in the paraventricular nucleus is sex-hormone dependent. This sexual dimorphism may explain sex differences in the hypothalamic–pituitary–adrenal axis function between female and male rats. Third, steroid effects on the astrocyte marker glial fibrillary acidic protein (GFAP) points to a complex regulatory mechanism. In an animal model of neurodegeneration (the Wobbler mouse) showing pronounced astrogliosis of the spinal cord, in vivo GC treatment down-regulated GFAP immunoreactivity, whereas the membrane-active steroid antioxidant U-74389F up-regulated this protein. It is likely that variations in GFAP protein expression affect spinal cord neurodegeneration in Wobbler mice. Fourth, an interaction between neurotrophins and GC is shown in the injured rat spinal cord. In this model, intensive GC treatment increases immunoreactive low affinity nerve growth factor (NGF) receptor in motoneuron processes. Because GC also increases immunoreactive NGF, this mechanism would support trophism and regeneration in damaged tissues. In conclusion, evidences show that some molecules regulated by adrenal steroids in neurons and glial cells are not only involved in physiological control, but additionally, may play important roles in neuropathology.  相似文献   

3.
4.
5.
Conflicting findings exist regarding the formation of diffuse and dense-core β-amyloid (Aβ) plaques in Alzheimer’s disease (AD). In the present study, we characterized Aβ plaque types in the brain and spinal cord of TgCRND8 mice, which express a transgene incorporating both the Indiana mutation (V717F) and the Swedish mutations (K670N/M671L) in the human amyloid-β protein precursor (APP) gene. By combining immunohistochemistry and thioflavin S staining, we were able to define dense-core and diffuse plaques in neocortex of the brain and spinal cord of 9 week-, 5 month-, 10 month- and 20-month-old TgCRND8 mice. The senile plaques in the neocortex were predominantly dense-core plaques, even in the youngest mice. However, diffuse plaques were instead detected in spinal cord of the mice, regardless of age. Our results that relative predominance of dense-core plaques in the neocortex and diffuse plaques in the spinal cord of TgCNRD8 mice of all disease durations argue against the notion that diffuse plaques may represent an early stage in the evolution of dense-core plaques. Furthermore, we also found that the ratio of Aβ42/Aβ40 of the brain was much higher than that of the spinal cord by Aβ ELISA assay. Our findings strongly indicate that diffuse and dense-core plaques may form via independent processes in AD and Aβ42 is more prone to form dense-core plaques than is Aβ40.  相似文献   

6.
Knowledge of the structure, genetics, circuits, and physiological properties of the mammalian brain in both normal and pathological states is ever increasing as research labs worldwide probe the various aspects of brain function. Until recently, however, comprehensive cataloging of gene expression across the central nervous system has been lacking. The Allen Institute for Brain Science, as part of its mission to propel neuroscience research, has completed several large gene-mapping projects in mouse, nonhuman primate, and human brain, producing informative online public resources and tools. Here we present the Allen Mouse Brain Atlas, covering ~20,000 genes throughout the adult mouse brain; the Allen Developing Mouse Brain Atlas, detailing expression of approximately 2,000 important developmental genes across seven embryonic and postnatal stages of brain growth; and the Allen Spinal Cord Atlas, revealing expression for ~20,000 genes in the adult and neonatal mouse spinal cords. Integrated data-mining tools, including reference atlases, informatics analyses, and 3-D viewers, are described. For these massive-scale projects, high-throughput industrial techniques were developed to standardize and reliably repeat experimental goals. To verify consistency and accuracy, a detailed analysis of the 1,000 most viewed genes for the adult mouse brain (according to website page views) was performed by comparing our data with peer-reviewed literature and other databases. We show that our data are highly consistent with independent sources and provide a comprehensive compendium of information and tools used by thousands of researchers each month. All data and tools are freely available via the Allen Brain Atlas portal (www.brain-map.org).  相似文献   

7.
Electrophysiological properties of neurons in the substantia gelatinosa (SG, or lamina II) were studied in vitro in spinal cord slices from 3-to 5-week-old rats. Based on the type of action potentials (APs) firing in response to long depolarization (0.5 to 0.8 sec), neurons were categorized into three types: tonic (APs were generated over the whole duration of the stimulus, n = 26, or 41.2%), adapting (a few APs occurred only at the beginning of stimulation, n = 8, 12.7%), and delayed-firing neurons, DFNs (APs occurred at the end of stimulation, n = 22, 35.1%); 11% of the cells had intermediate properties. Neurons of each type expressed distinct ion currents that were subthreshold for AP generation (< −40 mV). Tonic and adapting neurons either had no subthreshold currents (n = 21, or 61.3%) or expressed T-type calcium currents (n = 13, or 38.7%). All DFNs had outward A-type potassium currents. Statistical analysis confirmed this classification scheme: neurons of each type were differentially distributed in a 3-D parametric space of the main cellular properties. Distributions of tonic and adapting neurons partially overlapped, while that of DFNs differed significantly from both the above groups. It is suggested that DFNs perform a special function in the processing of sensory information; the functions of tonic and adapting neurons might be rather similar to each other. Neirofiziologiya/Neurophysiology, Vol. 40, No. 3, pp. 191–198, May–June, 2008.  相似文献   

8.
In contrast to mammals, salamanders have a remarkable ability to regenerate their spinal cord and recover full movement and function after tail amputation. To identify genes that may be associated with this greater regenerative ability, we designed an oligonucleotide microarray and profiled early gene expression during natural spinal cord regeneration in Ambystoma mexicanum. We sampled tissue at five early time points after tail amputation and identified genes that registered significant changes in mRNA abundance during the first 7 days of regeneration. A list of 1036 statistically significant genes was identified. Additional statistical and fold change criteria were applied to identify a smaller list of 360 genes that were used to describe predominant expression patterns and gene functions. Our results show that a diverse injury response is activated in concert with extracellular matrix remodeling mechanisms during the early acute phase of natural spinal cord regeneration. We also report gene expression similarities and differences between our study and studies that have profiled gene expression after spinal cord injury in rat. Our study illustrates the utility of a salamander model for identifying genes and gene functions that may enhance regenerative ability in mammals.  相似文献   

9.
10.
胚胎大鼠脑和脊髓神经干细胞的分离和培养   总被引:11,自引:2,他引:11  
Fu SL  Ma ZW  Yin L  Lu PH  Xu XM 《生理学报》2003,55(3):278-283
研究采用显微解剖、无血清细胞培养和免疫荧光细胞化学染色等实验技术 ,成功地建立了胚胎大鼠脑和脊髓神经干细胞 (NSCs)的分离和培养方法。结果显示 ,( 1)在含成纤维细胞生长因子 2 (FGF 2 )和表皮生长因子(EGF)的无血清培养液中 ,两种来源的NSCs经体外培养 8- 10代后 ,其细胞数呈指数级增加 ,其中脑来源的NSCs数由原代培养时的 1× 10 6 增加至 1× 10 12 ,脊髓来源的NSCs数从 1× 10 6 增加至 1× 10 11。增殖的细胞表达神经上皮干细胞蛋白 (nestin) ;( 2 )在含 1%胎牛血清 (FBS)的培养条件下 ,它们都能被诱导分化为神经元、少突胶质细胞和星型胶质细胞。但其分化比例可随细胞传代次数的增加而改变 ,其中 ,大脑来源的NSCs分化为神经元的比例从第二代 (P2 )的 11 95± 2 5 %下降至第五代 (P5)的 1 97± 1 16% (P <0 0 1) ,而少突胶质细胞的分化比例则基本保持不变 ,这一分化格局同样可在脊髓来源的NSCs中发现。结果表明 ,我们所分离和培养的细胞在体外经多次传代后仍具有很强的增殖能力和多向分化潜能 ,它们都表达nestin ,属于中枢神经系统的干细胞  相似文献   

11.
12.
Cytokine chemokine expression in contused rat spinal cord   总被引:25,自引:0,他引:25  
  相似文献   

13.
Thyrotropin-releasing hormone (TRH) and TRH extended peptides were extracted from rat hypothalamus and spinal cord and resolved by gel exclusion chromatography under dissociating conditions. Peptides related to TRH were detected by trypsin digestion and radioimmunoassay with an antibody to TRH or an antibody raised against the pentapeptide Glp-His-Pro-Gly-Lys. In addition to the tripeptide hormone a series of C-terminally extended forms of TRH was shown to occur in both tissues; no N-terminally extended peptides were detected. The structure of the TRH-related peptides was confirmed by chromatographic identification of the N-terminal pentapeptide sequence released by trypsin. The TRH extended peptides, which accounted for 15-20% of the total TRH, were present in three groups of different molecular size corresponding to predicted fragments of the TRH prohormone. One of the peptides in the spinal cord was identified by chromatographic comparison with a synthetic 16-residue peptide representing residues 154-169 of the prohormone. In the spinal cord the TRH extended peptides differed in their relative concentrations from the corresponding peptides in the hypothalamus, possibly reflecting differences in processing. The finding of extended forms of TRH in which the extension occurs only on the C-terminal side of the hormone sequence shows that the prohormone undergoes highly specific processing.  相似文献   

14.
15.
Summary The high sensitivity of the magnesium-dithizonate silver-dithizonate (MDSD) staining procedure makes this method very suitable for the histochemical localization of copper in different regions of the central nervous system of adult rats. In the telencephalon (bulbus olfactorius, nucleus caudatus-putamen, septum pellucidum and are dentata), diencephalon (nucleus habenulae medialis, nuclei of the hypothalamus in the vicinity of the third ventricle, and corpus mamillare), mesencephalon (substantia nigra), cerebellum (mainly in the nodulus), pons (locus coeruleus, nucleus vestibularis), medulla oblongata (nucleus tractus solitarii) and spinal cord, the glial cells exhibit specific copper staining. The glial cells of some circumventricular organs (e.g. the subfornical organ) are also stained using the MDSD method. The significant staining observed in whitematter glial cells (e.g. in the corpus callosum, cerebellum and spinal cord) further indicates the very high sensitivity of this method. In glial cells of the same regions, the presence of copper can likewise be demonstrated using the modified sulphide silver method. On the basis of the present histochemical results, it is suggested that copper may play an important role in the normal physiological functioning of glial cells and also, via glia-neuron interactions, in neuronal processes.  相似文献   

16.
This study was aimed to characterize pattern of occurrence of spontaneous single-strand breaks in situ in glial and neuronal nuclei of the cortex, middle brain and hyppocapmi (CA3 field) of rats selected for a threshold of nervous system excitability, and to study the influence of stress of various modality on such breaks. The results obtained evidence that: 1) intact animals possess a subpopulation of glial and neuronal cells revealed following gap filling in situ in opposite to other types of terminally differentiated non-proliferating cells; 2) the size of such a subpopulation differs depending on the lines of examined rats, parts of brain, and the type of stress.  相似文献   

17.
18.
Diazepam elevates serotonin (5HT) and 5-hydroxyindoleacetic acid (5HIAA) concentrations in rat brain and spinal cord. The maximal effect occurs 1–2 hrs after drug injection and is dose related between 5–20 mg/kg (intraperitoneal). The action of diazepam on brain 5HT and 5HIAA concentrations is modified by previous food consumption: the ingestion of a diet that raises brain 5HT and 5HIAA one hour before drug injection enhances the diazepam-induced increase in brain indoles; consumption of a diet that lowers brain 5HT and 5HIAA partially blocks the elevation in brain indoles that follows diazepam injection.  相似文献   

19.
An isolated thoracic spinal cord of the neonatal rat in vitro spontaneously generates sympathetic nerve discharge (SND) at ~25°C, but it fails in SND genesis at ≤ 10°C. Basal levels of the c-Fos expression in the spinal cords incubated at ≤ 10°C and ~25°C were compared to determine the anatomical substrates that might participate in SND genesis. Cells that exhibited c-Fos immunoreactivity were virtually absent in the spinal cords incubated at ≤ 10°C. However, in the spinal cords incubated at ~25°C, c-Fos-positive cells were found in the dorsal laminae, the white matter, lamina X, and the intermediolateral cell column (IML). Cell identities were verified by double labeling of c-Fos with neuron-specific nuclear protein (NeuN), glial fibrillary acidic protein (GFAP), or choline acetyltransferase (ChAT). The c-Fos-positive cells distributed in the white matter and lamina X were NeuN-negative or GFAP-positive and were glial cells. Endogenously active neurons showing c-Fos and NeuN double labeling were scattered in the dorsal laminae and concentrated in the IML. Double labeling of c-Fos and ChAT confirmed the presence of active sympathetic preganglionic neurons (SPNs) in the IML. Suppression of SND genesis by tetrodotoxin (TTX) or mecamylamine (MECA, nicotinic receptor blocker) almost abolished c-Fos expression in dorsal laminae, but only mildly affected c-Fos expression in the SPNs. Therefore, c-Fos expression in some SPNs does not require synaptic activation. Our results suggest that spinal SND genesis is initiated from some spontaneously active SPNs, which are capable of TTX- or MECA-resistant c-Fos expression.  相似文献   

20.
Mice lacking the axon guidance molecule EphA4 have been shown to exhibit extensive axonal regeneration and functional recovery following spinal cord injury. To assess mechanisms by which EphA4 may modify the response to neural injury a microarray was performed on spinal cord tissue from mice with spinal cord injury and sham injured controls. RNA was purified from spinal cords of adult EphA4 knockout and wild-type mice four days following lumbar spinal cord hemisection or laminectomy only and was hybridised to Affymetrix All-Exon Array 1.0 GeneChips?. While subsequent analyses indicated that several pathways were altered in EphA4 knockout mice, of particular interest was the attenuated expression of a number of inflammatory genes, including Arginase 1, expression of which was lower in injured EphA4 knockout compared to wild-type mice. Immunohistological analyses of different cellular components of the immune response were then performed in injured EphA4 knockout and wildtype spinal cords. While numbers of infiltrating CD3+ T cells were low in the hemisection model, a robust CD11b+ macrophage/microglial response was observed post-injury. There was no difference in the overall number or spread of macrophages/activated microglia in injured EphA4 knockout compared to wild-type spinal cords at 2, 4 or 14 days post-injury, however a lower proportion of Arginase-1 immunoreactive macrophages/activated microglia was observed in EphA4 knockout spinal cords at 4 days post-injury. Subtle alterations in the neuroinflammatory response in injured EphA4 knockout spinal cords may contribute to the regeneration and recovery observed in these mice following injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号