首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Fe emits low-energy X rays and Auger electrons by electron capture decay. Auger electrons are useful for autoradiographic examination of Fe incorporation among microbial communities. Attainable resolution, in terms of silver grain deposition, is excellent and comparable to H. Two known Fe-demanding processes, photosynthetic CO(2) fixation and N(2) fixation, were examined by autoradiography of Anabaena populations. During photosynthetically active (illuminated) N(2)-fixing periods, biological incorporation of FeCl(3) by vegetative cells and heterocysts was evident. When N(2) fixation was suppressed by NH(4) additions, heterocysts revealed no incorporation of Fe. Conversely, when N(2)-fixing Anabaena filaments were placed in darkness, Fe incorporation decreased in vegetative cells, whereas heterocysts showed sustained rates of Fe incorporation. Bacteria actively incorporated Fe under both light and dark conditions. The chelated (by Na(2)-ethylenediaminetetraacetate) form of FeCl(3) was more readily incorporated than the nonchelated form. Furthermore, abiotic adsorption of Fe to filters and nonliving particles proved lower when chelated Fe was used in experiments. Fe autoradiography is useful for observing the fate and cellular distribution of various forms of Fe among aquatic microbial communities.  相似文献   

2.
The aquatic filamentous cyanobacteria Anabaena oscillarioides and Trichodesmium sp. reveal specific cellular regions of tetrazolium salt reduction. The effects of localized reduction of five tetrazolium salts on N2 fixation (acetylene reduction), 14CO2 fixation, and 3H2 utilization were examined. During short-term (within 30 min) exposures in A. oscillarioides, salt reduction in heterocysts occurred simultaneously with inhibition of acetylene reduction. Conversely, when salts failed to either penetrate or be reduced in heterocysts, no inhibition of acetylene reduction occurred. When salts were rapidly reduced in vegetative cells, 14CO2 fixation and 3H2 utilization rates decreased, whereas salts exclusively reduced in heterocysts were not linked to blockage of these processes. In the nonheterocystous genus Trichodesmium, the deposition of reduced 2,3,5-triphenyl-2-tetrazolium chloride (TTC) in the internal cores of trichomes occurs simultaneously with a lowering of acetylene reduction rates. Since TTC deposition in heterocysts of A. oscillarioides occurs contemporaneously with inhibition of acetylene reduction, we conclude that the cellular reduction of this salt is of use in locating potential N2-fixing sites in cyanobacteria. The possible applications and problems associated with interpreting localized reduction of tetrazolium salts in cyanobacteria are presented.  相似文献   

3.
Heterocyst spacing in blue-green bacteria is widely assumed to be due to a diffusible inhibitor. The inhibitor, a nitrogen-rich compound, probably glutamine, is produced via the N2-fixing enzymes of the heterocyst and in turn serves to suppress the induction of these enzymes and of the differentiation of vegetative cells to heterocysts. This simple morphogenetic mechanism operating in growing cellular filaments ofAnabaena species is investigated on the basis of a continuous and a discrete cellular model, as well as by cell-by-cell simulation of the inhibitor transport. The resulting distances between heterocysts and kinetics of their production are compared with observations, and the values of physical parameters are estimated from the models.  相似文献   

4.
5.
In this work, we estimate the contributions of the different sources of N incorporated by two N2-fixing cyanobacterial blooms (Anabaena sp. and Microchaete sp.) in the rice fields of Valencia (Spain) during the crop cycles of 1999 and 2000, and evaluate the response of nitrogenase and C assimilation activities to changing irradiances. Our results show that, far from the generally assumed idea that the largest part of the N incorporated by N2-fixing cyanobacterial blooms in rice fields comes from N2 fixation, both cyanobacterial blooms incorporated about three times more N from dissolved combined compounds than from N2 fixation (only about 33–41% of the N incorporated came from N2 fixation). Our results on the photodependence of C and N2 fixation indicate that in both cyanobacterial blooms, N2 fixation showed a steeper initial slope (α) and was saturated with less irradiance than C fixation, suggesting that N2 fixation was more efficient than photosynthesis under conditions of light limitation. At saturating light, N2 fixation and C fixation differed depending on the bloom and on the environmental conditions created by rice plant growth. Carbon assimilation but not nitrogenase activity appeared photoinhibited in the Anabaena but not in the Microchaete bloom in August 1999, when the plants were tall and the canopy was important, and there was no limitation of dissolved inorganic carbon. The opposite was found in the Microchaete bloom of June 2000, when plants were small and produced little shade, and dissolved inorganic carbon was very low.  相似文献   

6.
7.
Two Clark-type polarographic electrodes were used to measure simultaneous H2 and O2 exchange from three species of the blue-green alga Anabaena. Maximum H2 photoevolution from N2-fixing cultures of Anabaena required only the removal of dissolved O2 and N2; no adaptation period was necessary. No correlation of H2 photoproduction with photosynthetic O2 evolution, beyond their mutual light requirement, was found. Hydrogen photoevolution has the following characteristics in common with N2 fixation in these organisms: DCMU insensitivity; similar white light dependency with very low dark production rates; maximum efficiency in photosystem I light; inhibition by N2, O2 and acetylene; and an apparent requirement for the presence of heterocysts. Growth on nitrate medium reduces, and on ammonium medium obliterates, both reactions. Cultures grown under limiting CO2 conditions have H2 photoproduction rates proportional to their growth rates. Hydrogenase activity is inferred from H2 uptake in the dark, but this activity apparently is independent of the photoevolution of H2 which is ascribed strictly to the nitrogenase system.  相似文献   

8.
13N, generated by proton bombardment of 13C powder, is rapidly and easily converted to 13N-N2, 0.01 atm pressure, ca. 10 mCi/ml, by automated Dumas combustion. 13N fixed (as 13N-N2) by algal filaments was localized by an autoradiographic technique which permits track autoradiography with isotopes having short half-lives. Our findings show directly that a minimum of about 25% of the N2 fixation by intact, aerobically grown filaments of Anabaena cylindrica is carried out by the heterocysts. If all of the N2 fixation takes place in the heterocysts, then the movement of nitrogen along the filaments can be characterized by a constant τ < ca. 5 s (cell-2).  相似文献   

9.
DNA replication and repair are two fundamental processes required in life proliferation and cellular defense and some common proteins are involved in both processes. The filamentous cyanobacterium Anabaena sp. strain PCC 7120 is capable of forming heterocysts for N2 fixation in the absence of a combined-nitrogen source. This developmental process is intimately linked to cell cycle control. In this study, we investigated the localization of the DNA double-strand break repair protein RecN during key cellular events, such as chromosome damaging, cell division, and heterocyst differentiation. Treatment by a drug causing DNA double-strand breaks (DSBs) induced reorganization of the RecN focus preferentially towards the mid-cell position. RecN-GFP was absent in most mature heterocysts. Furthermore, our results showed that HetR, a central player in heterocyst development, was involved in the proper positioning and distribution of RecN-GFP. These results showed the dynamics of RecN in DSB repair and suggested a differential regulation of DNA DSB repair in vegetative cell and heterocysts. The absence of RecN in mature heterocysts is compatible with the terminal nature of these cells.  相似文献   

10.
In the diazotrophic filaments of heterocyst-forming cyanobacteria, an exchange of metabolites takes place between vegetative cells and heterocysts that results in a net transfer of reduced carbon to the heterocysts and of fixed nitrogen to the vegetative cells. Open reading frame alr2355 of the genome of Anabaena sp. strain PCC 7120 is the ald gene encoding alanine dehydrogenase. A strain carrying a green fluorescent protein (GFP) fusion to the N terminus of Ald (Ald-N-GFP) showed that the ald gene is expressed in differentiating and mature heterocysts. Inactivation of ald resulted in a lack of alanine dehydrogenase activity, a substantially decreased nitrogenase activity, and a 50% reduction in the rate of diazotrophic growth. Whereas production of alanine was not affected in the ald mutant, in vivo labeling with [14C]alanine (in whole filaments and isolated heterocysts) or [14C]pyruvate (in whole filaments) showed that alanine catabolism was hampered. Thus, alanine catabolism in the heterocysts is needed for normal diazotrophic growth. Our results extend the significance of a previous work that suggested that alanine is transported from vegetative cells into heterocysts in the diazotrophic Anabaena filament.Cyanobacteria such as those of the genera Anabaena and Nostoc grow as filaments of cells (trichomes) that, when incubated in the absence of a source of combined nitrogen, present two cell types: vegetative cells that perform oxygenic photosynthesis and heterocysts that perform N2 fixation. Heterocysts carry the oxygen-labile enzyme nitrogenase, and, thus, compartmentalization is the way these organisms separate the incompatible activities of N2 fixation and O2-evolving photosynthesis (9). In Anabaena and Nostoc, heterocysts are spaced along the filament so that approximately 1 in 10 to 15 cells is a heterocyst. Heterocysts differentiate from vegetative cells in a process that involves execution of a specific program of gene expression (12, 15, 39). In the N2-fixing filament, the heterocysts provide the vegetative cells with fixed nitrogen, and the vegetative cells provide the heterocysts with photosynthate (38). Two important aspects of the diazotrophic physiology of heterocyst-forming cyanobacteria that are still under investigation include the actual metabolites that are transferred intercellularly and the mechanism(s) of transfer (10).Because the ammonium produced by nitrogenase is incorporated into glutamate to produce glutamine in the heterocyst and because the heterocyst lacks the main glutamate-synthesizing enzyme, glutamine(amide):2-oxoglutarate amino transferase (GOGAT; also known as glutamate synthase), a physiological exchange of glutamine and glutamate resulting in a net transfer of nitrogen from the heterocysts to the vegetative cells has been suggested (21, 36, 37). On the other hand, a sugar is supposed to be transferred from vegetative cells to heterocysts. Because high invertase activity levels are found in the heterocysts (34) and because overexpression of sucrose-degrading sucrose synthase in Anabaena sp. impairs diazotrophic growth (4), it is possible that sucrose is a transferred carbon source. Indeed, determination of 14C-labeled metabolites in heterocysts isolated from filaments incubated for short periods of time with [14C]bicarbonate identified sugars and glutamate as possible compounds transferred from vegetative cells to heterocysts (13). However, this study also identified alanine as a metabolite possibly transported from vegetative cells to heterocysts.The cyanobacteria bear a Gram-negative type of cell envelope, carrying an outer membrane (OM) outside the cytoplasmic membrane (CM) and the peptidoglycan layer (9, 15). In filamentous cyanobacteria, whereas the CM and peptidoglycan layer surround each cell, the OM is continuous along the filament, defining a continuous periplasmic space (10, 19). In Anabaena sp. strain PCC 7120, the OM is a permeability barrier for metabolites such as glutamate and sucrose (27). Two possible pathways for intercellular molecular exchange in heterocyst-forming cyanobacteria have been discussed: the periplasm (10, 19) and cell-to-cell-joining proteinaceous structures (11, 22, 25). Whereas the latter would mediate direct transfer of metabolites between the cytoplasm of adjacent cells, the former would require specific CM permeases to mediate metabolite transfer between the periplasm and the cytoplasm of each cell type (10).In Anabaena sp. strain PCC 7120, two ABC-type amino acid transporters have been identified that are specifically required for diazotrophic growth (29, 30). The N-I transporter (NatABCDE), which shows preference for neutral hydrophobic amino acids, is present exclusively in vegetative cells (30). The N-II transporter (NatFGH-BgtA), which shows preference for acidic and neutral polar amino acids, is present in both vegetative cells and heterocysts (29). A general phenotype of mutants of neutral amino acid transporters in cyanobacteria is release into the culture medium of some hydrophobic amino acids, especially alanine (16, 23, 24), which is accumulated at higher levels in the extracellular medium of cultures incubated in the absence than in the presence of a source of combined nitrogen (30).Thus, alanine is a conspicuous metabolite in the diazotrophic physiology of heterocyst-forming cyanobacteria, and the possibility that it moves in either direction between heterocysts and vegetative cells has been discussed (13, 29, 30). Alanine dehydrogenase, which catalyzes the reversible reductive amination of pyruvate, has been detected in several cyanobacteria (8). In Anabaena spp., alanine dehydrogenase has been found at higher levels or exclusively in diazotrophic cultures (26), and in the diazotrophic filaments of Anabaena cylindrica it is present at higher levels in heterocysts than in vegetative cells (33). Open reading frame (ORF) alr2355 of the Anabaena sp. strain PCC 7120 genome is predicted to encode an alanine dehydrogenase (14). In this work we addressed the expression and inactivation of alr2355, identifying it as the Anabaena ald gene and defining an important catabolic role for alanine dehydrogenase in diazotrophy.  相似文献   

11.
Detached roots and nodules of the N2-fixing species, Albus glutinosa (European black alder), actively assimilate CO2. The maximum rates of dark CO2 fixation observed for detached nodules and roots were 15 and 3 micromoles CO2 fixed per gram dry weight per hour, respectively. The net incorporation of CO2 in these tissues was catalyzed by phosphoenolpyruvate carboxylase which produces organic acids, some of which are used in the synthesis of the amino acids, aspartate, glutamate, and citrulline and by carbamyl phosphate synthetase. The latter accounts for approximately 30 to 40% of the CO2 fixed and provides carbamyl phosphate for the synthesis of citrulline. Results of labeling studies suggest that there are multiple pools of malate present in nodules. The major pool is apparently metabolically inactive and of unknown function while the smaller pool is rapidly utilized in the synthesis of amino acids. Dark CO2 fixation and N2 fixation in nodules decreased after treatment of nodulated plants with nitrate while the percentage of the total 14C incorporated into organic acids increased. Phosphoenolpyruvate carboxylase and carbamyl phosphate synthetase play key roles in the synthesis of amino acids including citrulline and in the metabolism of N2-fixing nodules and roots of alder.  相似文献   

12.
Light and dark reactions of the uptake hydrogenase in anabaena 7120   总被引:5,自引:1,他引:4       下载免费PDF全文
Reactions of the uptake hydrogenase from Anabaena 7120 (A.T.C.C. 27893, Nostoc muscorum) were examined in whole filaments, isolated heterocysts, and membrane particles. Whole filaments or isolated heterocysts that contained nitrogenase consumed H2 in the presence of C2H2 or N2 in a light-dependent reaction. If nitrogenase was inactivated by O2 shock, filaments catalyzed H2 uptake to an unidentified endogenous acceptor in the light. Addition of NO3 or NO2 enhanced these rates. Isolated heterocysts consumed H2 in the dark in the presence of electron acceptors with positive midpoint potentials, and these reactions were not enhanced by light. With acceptors of negative midpoint potential, significant light enhancement of H2 uptake occurred. Maximum rates of light-dependent uptake were approximately 25% of the maximum dark rates observed. Membrane particles prepared from isolated heterocysts showed similar specificity for electron acceptors. These particles catalyzed a cyanide-sensitive oxyhydrogen reaction that was inactivated by O2 at O2 concentrations above 2%. Light-dependent H2 uptake to low potential acceptors by these particles was inhibited by dibromothymoquinone but was insensitive to cyanide. In the presence of O2, light-dependent H2 uptake occurred simultaneously with the oxyhydrogen reaction. The pH optima for both types of H2 uptake were near 7.0. These results further clarify the role of uptake hydrogenase in donating electrons to both the photosynthetic and respiratory electron transport chains of Anabaena.  相似文献   

13.
Anabaena species are commonly colonized by bacteria, especially during N2-fixing blooms. Generally these associations do not represent bacterial attack on algal hosts. Instead, the algal N2-fixing capabilities are increased in the presence of the bacteria. Possible mechanisms promoting the mutual growth of algae and attached bacteria were investigated by observing specific sites of bacterial attachment, by noting reduced microzones created by the bacteria, and by locating sites of bacterial uptake of organics representative of algal excretion products.Attached bacteria show preference for typical algal excretion products and their growth is enhanced by such products. In return, enhancement of algal nitrogenase activity occurs when bacteria create O2-consuming microzones around the nitrogenase-bearing heterocysts.  相似文献   

14.
To investigate the role of ammonium-assimilating enzyme in heterocyst differentiation, pattern formation and nitrogen fixation, MSX-resistant and GS-impaired mutants of Anabaena 7120 were isolated using transposon (Tn5-1063) mutagenesis. Mutant Gs1 and Gs2 (impaired in GS activity) exhibited a similar rate of nitrogenase activity compared to that of the wild type under dinitrogen aerobic conditions in the presence and absence of MSX. Filaments of Gs1 and Gs2 produced heterocysts with an evenly spaced pattern in N2-grown conditions, while addition of MSX altered the interheterocyst spacing pattern in wild type as well as in mutant strains. The wild type showed complete repression of heterocyst development and nitrogen fixation in the presence of NO3 or NH4 +, whereas the mutants Gs1 and Gs2 formed heterocysts and fixed nitrogen in the presence of NO3 and NH4 +. Addition of MSX caused complete inhibition of glutamine synthetase activity in wild type but Gs1 and Gs2 remained unaffected. These results suggest that glutamine but not ammonium is directly involved in regulation of heterocyst differentiation, interheterocyst spacing pattern and nitrogen fixation in Anabaena.  相似文献   

15.

Background

In the filamentous cyanobacterium Nostoc punctiforme ATCC 29133, removal of combined nitrogen induces the differentiation of heterocysts, a cell-type specialized in N2 fixation. The differentiation involves genomic, structural and metabolic adaptations. In cyanobacteria, changes in the availability of carbon and nitrogen have also been linked to redox regulated posttranslational modifications of protein bound thiol groups. We have here employed a thiol targeting strategy to relatively quantify the putative redox proteome in heterocysts as compared to N2-fixing filaments, 24 hours after combined nitrogen depletion. The aim of the study was to expand the coverage of the cell-type specific proteome and metabolic landscape of heterocysts.

Results

Here we report the first cell-type specific proteome of newly formed heterocysts, compared to N2-fixing filaments, using the cysteine-specific selective ICAT methodology. The data set defined a good quantitative accuracy of the ICAT reagent in complex protein samples. The relative abundance levels of 511 proteins were determined and 74% showed a cell-type specific differential abundance. The majority of the identified proteins have not previously been quantified at the cell-type specific level. We have in addition analyzed the cell-type specific differential abundance of a large section of proteins quantified in both newly formed and steady-state diazotrophic cultures in N. punctiforme. The results describe a wide distribution of members of the putative redox regulated Cys-proteome in the central metabolism of both vegetative cells and heterocysts of N. punctiforme.

Conclusions

The data set broadens our understanding of heterocysts and describes novel proteins involved in heterocyst physiology, including signaling and regulatory proteins as well as a large number of proteins with unknown function. Significant differences in cell-type specific abundance levels were present in the cell-type specific proteomes of newly formed diazotrophic filaments as compared to steady-state cultures. Therefore we conclude that by using our approach we are able to analyze a synchronized fraction of newly formed heterocysts, which enabled a better detection of proteins involved in the heterocyst specific physiology.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1064) contains supplementary material, which is available to authorized users.  相似文献   

16.
N2 fixation (acetylene reduction) has been studied with heterocysts isolated from Anabaena cylindrica and Anabaena 7120. In the presence of ATP and at very low concentrations of sodium dithionite, reducing equivalents for activity of nitrogenase in these cells can be derived from several compounds. In the dark, d-glucose 6-phosphate, 6-phosphogluconate and dl-isocitrate support acetylene reduction via NADPH. In the light, reductant can be generated by Photosystem I.  相似文献   

17.
In natural habitats, organisms especially phytoplankton are not always continuously subjected to ultraviolet-B radiation (UVBR). By simulation of the natural situation, the N2-fixing cyanobacterium Anabaena sp. PCC 7120 was subjected to UV-B exposure and recovery cycles. A series of morphological and physiological changes were observed in Anabaena sp. PCC 7120 under repeated UVBR when compared with controls. Such as the breakage of filaments, intervals between heterocysts, heterocyst frequency, total carbohydrate, and carotenoids were increased, while the nitrogenase activity and photosynthetic activity were inhibited by repeated UVBR; however, these activities could recover when UV-B stress was removed. Unexpectedly, the over-compensatory growth was observed at the end of the second round of exposure and recovery cycle. Our results showed that discontinuous UVBR could increase the growth rate and the tolerance as well as repair capacity of Anabaena sp. PCC 7120. These results indicate that moderate UVBR may increase the growth of cyanobacteria in natural habitats.  相似文献   

18.
19.
We have investigated two approaches to enhance and extend H2 photoproduction yields in heterocystous, N2-fixing cyanobacteria entrapped in thin alginate films. In the first approach, periodic CO2 supplementation was provided to alginate-entrapped, N-deprived cells. N deprivation led to the inhibition of photosynthetic activity in vegetative cells and the attenuation of H2 production over time. Our results demonstrated that alginate-entrapped ΔhupL cells were considerably more sensitive to high light intensity, N deficiency, and imbalances in C/N ratios than wild-type cells. In the second approach, Anabaena strain PCC 7120, its ΔhupL mutant, and Calothrix strain 336/3 films were supplemented with N2 by periodic treatments of air, or air plus CO2. These treatments restored the photosynthetic activity of the cells and led to a high level of H2 production in Calothrix 336/3 and ΔhupL cells (except for the treatment air plus CO2) but not in the Anabaena PCC 7120 strain (for which H2 yields did not change after air treatments). The highest H2 yield was obtained by the air treatment of ΔhupL cells. Notably, the supplementation of CO2 under an air atmosphere led to prominent symptoms of N deficiency in the ΔhupL strain but not in the wild-type strain. We propose that uptake hydrogenase activity in heterocystous cyanobacteria not only supports nitrogenase activity by removing excess O2 from heterocysts but also indirectly protects the photosynthetic apparatus of vegetative cells from photoinhibition, especially under stressful conditions that cause an imbalance in the C/N ratio in cells.  相似文献   

20.
In light of recent proposals that iron (Fe) availability may play an important role in controlling oceanic primary production and nutrient flux, its regulatory impact on N2 fixation and production dynamics was investigated in the widespread and biogeochemically important diazotrophic, planktonic cyanobacteria Trichodesmium spp. Fe additions, as FeCl3 and EDTA-chelated FeCl3, enhanced N2 fixation (nitrogenase activity), photosynthesis (CO2 fixation), and growth (chlorophyll a production) in both naturally occurring and cultured (on unenriched oligotrophic seawater) Trichodesmium populations. Maximum enhancement of these processes occurred under FeEDTA-amended conditions. On occasions, EDTA alone led to enhancement. No evidence for previously proposed molybdenum or phosphorus limitation was found. Our findings geographically extend support for Fe limitation of N2 fixation and primary production to tropical and subtropical oligotrophic ocean waters often characterized by Trichodesmium blooms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号