首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The small GTPase Rab6 is a key regulator in the retrograde transfer from endosomes via the Golgi to the ER. Three isoforms of Rab6 have been identified, the ubiquitously expressed Rab6A and Rab6A', and the brain specific Rab6B. Recent studies have shown that Rab6A' is the major isoform regulating this retrograde transport. Cytoplasmic dynein is the main motor protein complex for this transport. Dynein consists of two heavy chains, two intermediate chains, four light intermediate chains and several light chains, called roadblock/LC7 proteins or DYNLRB proteins. In mammalian cells two light chain isoforms have been identified, DYNLRB1 and DYNLRB2. We here show with yeast-two-hybrid, co-immunoprecipitation and pull down studies that DYNLRB1 specifically interacts with all three Rab6 isoforms and co-localises at the Golgi. This is the first example of a direct interaction between Rab6 isoforms and the dynein complex. Pull down experiments showed further preferred association of DYNLRB1 with GTP-bound Rab6A and interestingly GDP-bound Rab6A' and Rab6B. In addition DYNLRB1 was found in the Golgi apparatus where it co-localises with EYFP-Rab6 isoforms. DYNLRB is a putative modulator of the intrinsic GTPase activity of GTP-binding proteins. In vitro we were not able to reproduce this effect on Rab6 GTPase activity.  相似文献   

2.
The two isoforms of the Rab6 GTPase, Rab6A and Rab6A', regulate a retrograde transport route connecting early endosomes and the endoplasmic reticulum via the Golgi complex in interphasic cells. Here we report that when Rab6A' function is altered cells are unable to progress normally through mitosis. Such cells are blocked in metaphase, despite displaying a normal Golgi fragmentation and with the Mad2-spindle checkpoint activated. Furthermore, the Rab6 effector p150(Glued), a subunit of the dynein/dynactin complex, remains associated with some kinetochores. A similar phenotype was observed when GAPCenA, a GTPase-activating protein of Rab6, was depleted from cells. Our results suggest that Rab6A' likely regulates the dynamics of the dynein/dynactin complex at the kinetochores and consequently the inactivation of the Mad2-spindle checkpoint. Rab6A', through its interaction with p150(Glued) and GAPCenA, may thus participate in a pathway involved in the metaphase/anaphase transition.  相似文献   

3.
Rab6A and Rab6A' GTPases play non-overlapping roles in membrane trafficking   总被引:8,自引:2,他引:6  
The closely related Rab6 isoforms, Rab6A and Rab6A', have been shown to regulate vesicular trafficking within the Golgi and post-Golgi compartments, but studies using dominant active or negative mutant suggested conflicting models. Here, we report that reduction in the expression of Rab6 isoform using specific small interfering RNA reveals noticeable differences in the Rab6A and Rab6A' biological functions. Surprisingly, Rab6A seems to be largely dispensable in membrane trafficking events, whereas knocking down the expression of Rab6A' hampers the intracellular transport of the retrograde cargo marker, the Shiga Toxin B-subunit along the endocytic pathway, and causes defects in Golgi- associated protein recycling through the endoplasmic reticulum. We also showed that Rab6A' is required for cell cycle progression through mitosis and identify Ile(62) as a key residue for uncoupling Rab6A' functions in mitosis and retrograde trafficking. Thus, our work shows that Rab6A and Rab6A' perform different functions within the cell and suggests a novel role for Rab6A' as the major Rab6 isoform regulating previously described Rab6-dependent transport pathways.  相似文献   

4.
Rab6 GTPase regulates intracellular transport at the level of the Golgi complex. Using the yeast two-hybrid screen, we have isolated two clones that specifically interact with the three isoforms of Rab6 present in mammalian cells (Rab6A, A' and B). The cDNAs encode two proteins of 976 and 1120 amino acids (calculated molecular mass of 112 and 128 kDa, respectively) that we named Rab6IP2A and Rab6IP2B (for Rab6 Interacting Protein 2). The two proteins likely correspond to spliced variants of the same gene. Rab6IP2s have no significant homology with other known proteins, including Rab effectors or partners. They are ubiquitously expressed, mostly cytosolic and found in high molecular mass complexes in brain cytosol. We show that Rab6IP2s can be recruited on Golgi membranes in a Rab6:GTP-dependent manner. The overexpression of any form of Rab6IP2 has no detectable effect on the secretory pathway. In contrast, the retrograde transport of the Shiga toxin B subunit between the plasma membrane and the Golgi complex is partly inhibited in cells overexpressing the Rab6-binding domain of Rab6IP2. Our data suggest that Rab6IP2s is involved in the pathway regulated by Rab6A'.  相似文献   

5.
Toxoplasma gondii relies on protein secretion from specialized organelles for invasion of host cells and establishment of a parasitophorous vacuole. We identify T. gondii Rab6 as a regulator of protein transport between post-Golgi dense granule organelles and the Golgi. Toxoplasma Rab6 was localized to cisternal rims of the late Golgi and trans-Golgi network, associated transport vesicles, and microdomains of dense granule and endosomal membranes. Overexpression of wild-type Rab6 or GTP-activated Rab6(Q70L) rerouted soluble dense granule secretory proteins to the Golgi and endoplasmic reticulum and augmented the effect of brefeldin A on Golgi resorption to the endoplasmic reticulum. Parasites expressing a nucleotide-free (Rab6(N124I)) or a GDP-bound (Rab6(T25N)) mutant accumulated dense granule proteins in the Golgi and associated transport vesicles and displayed reduced secretion of GRA4 and a delay in glycosylation of GRA2. Activated Rab6 on Golgi membranes colocalized with centrin during mitosis, and parasite clones expressing Rab6 mutants displayed a partial shift in cytokinesis from endodyogeny (formation of two daughter cells) to endopolygeny (multiple daughter cells). We propose that Toxoplasma Rab6 regulates retrograde transport from post-Golgi secretory granules to the parasite Golgi.  相似文献   

6.
The small GTP-binding protein rab6 functions in intra-Golgi transport   总被引:19,自引:4,他引:15       下载免费PDF全文
《The Journal of cell biology》1994,127(6):1575-1588
Rab6 is a ubiquitous ras-like GTP-binding protein associated with the membranes of the Golgi complex (Goud, B., A. Zahraoui, A. Tavitian, and J. Saraste. 1990. Nature (Lond.). 345:553-556; Antony, C., C. Cibert, G. Geraud, A. Santa Maria, B. Maro, V. Mayau, and B. Goud. 1992. J. Cell Sci. 103: 785-796). We have transiently overexpressed in mouse L cells and human HeLa cells wild-type rab6, GTP (rab6 Q72L), and GDP (rab6 T27N) -bound mutants of rab6 and analyzed the intracellular transport of a soluble secreted form of alkaline phosphatase (SEAP) and of a plasma membrane protein, the hemagglutinin protein (HA) of influenza virus. Over-expression of wild-type rab6 and rab6 Q72L greatly reduced transport of both markers between cis/medial (alpha- mannosidase II positive) and late (sialyl-transferase positive) Golgi compartments, without affecting transport from the endoplasmic reticulum (ER) to cis/medial-Golgi or from the trans-Golgi network (TGN) to the plasma membrane. Whereas overexpression of rab6 T27N did not affect the individual steps of transport between ER and the plasma membrane, it caused an apparent delay in secretion, most likely due to the accumulation of the transport markers in late Golgi compartments. Overexpression of both rab6 Q72L and rab6 T27N altered the morphology of the Golgi apparatus as well as that of the TGN, as assessed at the immunofluorescence level with several markers. We interpret these results as indicating that rab6 controls intra-Golgi transport, either acting as an inhibitor in anterograde transport or as a positive regulator of retrograde transport.  相似文献   

7.
The Rab6 subfamily of small GTPases consists of three different isoforms: Rab6A, Rab6A' and Rab6B. Both Rab6A and Rab6A' are ubiquitously expressed whereas Rab6B is predominantly expressed in brain. Recent studies have shown that Rab6A' is the isoform regulating the retrograde transport from late endosomes via the Golgi to the ER and in the transition from anaphase to metaphase during mitosis. Since the role of Rab6B is still ill defined, we set out to characterize its intracellular environment and dynamic behavior. In a Y-2H search for novel Rab6 interacting proteins, we identified Bicaudal-D1, a large coiled-coil protein known to bind to the dynein/dynactin complex and previously shown to be a binding partner for Rab6A/Rab6A'. Co-immunoprecipitation studies and pull down assays confirmed that Bicaudal-D1 also interacts with Rab6B in its active form. Using confocal laser scanning microscopy it was established that Rab6B and Bicaudal-D1 co-localize at the Golgi and vesicles that align along microtubules. Furthermore, both proteins co-localized with dynein in neurites of SK-N-SH cells. Live cell imaging revealed bi-directional movement of EGFP-Rab6B structures in SK-N-SH neurites. We conclude from our data that the brain-specific Rab6B via Bicaudal-D1 is linked to the dynein/dynactin complex, suggesting a regulatory role for Rab6B in the retrograde transport of cargo in neuronal cells.  相似文献   

8.
Ricin is transported from early endosomes and/or the recycling compartment to the trans-Golgi network (TGN) and subsequently to the endoplasmic recticulum (ER) before it enters the cytosol and intoxicates cells. We have investigated the role of the Rab6 isoforms in retrograde transport of ricin using both oligo- and vector-based RNAi assays. Ricin transport to the TGN was inhibited by the depletion of Rab6A when the Rab6A messenger RNA (mRNA) levels were reduced by more than 40% and less than 75%. However, when Rab6A mRNA was reduced by more than 75% and Rab6A' mRNA was simultaneously up-regulated, the inhibition of ricin sulfation was abolished, indicating that the up-regulation of Rab6A' may compensate for the loss of Rab6A function. In addition, we found that a near complete depletion of Rab6A' gave approximately 40% reduction in ricin sulfation. The up-regulation of Rab6A mRNA levels did not seem to compensate for the loss of Rab6A' function. The depletion of both Rab6A and Rab6A' gave a stronger inhibition of ricin sulfation than what was observed knocking down the two isoforms separately. In conclusion, both Rab6A and Rab6A' seem to be involved in the transport of ricin from endosomes to the Golgi apparatus.  相似文献   

9.
The small GTPase rab6A but not the isoform rab6A' has previously been identified as a regulator of the COPI-independent recycling route that carries Golgi-resident proteins and certain toxins from the Golgi to the endoplasmic reticulum (ER). The isoform rab6A' has been implicated in Golgi-to-endosomal recycling. Because rab6A but not A', binds rabkinesin6, this motor protein is proposed to mediate COPI-independent recycling. We show here that both rab6A and rab6A' GTP-restricted mutants promote, with similar efficiency, a microtubule-dependent recycling of Golgi resident glycosylation enzymes upon overexpression. Moreover, we used small interfering RNA mediated down-regulation of rab6A and A' expression and found that reduced levels of rab6 perturbs organization of the Golgi apparatus and delays Golgi-to-ER recycling. Rab6-directed Golgi-to-ER recycling seems to require functional dynactin, as overexpression of p50/dynamitin, or a C-terminal fragment of Bicaudal-D, both known to interact with dynactin inhibit recycling. We further present evidence that rab6-mediated recycling seems to be initiated from the trans-Golgi network. Together, this suggests that a recycling pathway operates at the level of the trans-Golgi linking directly to the ER. This pathway would be the preferred route for both toxins and resident Golgi proteins.  相似文献   

10.
Hmunc13 is a cytosolic diacylglycerol (DAG)-binding protein, which is upregulated in renal cortical tubule and mesangial cells by hyperglycemia. In response to DAG activation, hmunc13 translocates to the Golgi. To investigate how this may relate to its function, we used a bacterial two-hybrid screen to look for hmunc13-interacting proteins. Full-length Rab34 was specifically isolated from a human kidney cDNA library. Co-expression of the two proteins confirmed Rab34 as a Golgi-associated protein, which was immunoprecipitated from cell lysates by hmunc13. Glutathione S-transferase fusion proteins of WT, Q111L (GTP bound), and T66N (GDP bound) mutants were created, and their GTP-binding activity verified by radioactive overlay assay. Binding of hmunc13 was observed with Q111L, barely detectable with T66N and enhanced with Rab34WT loaded with GTPgammaS compared with GDP loaded. Deletion of munc homolgy domain (MHD)-2, eliminated the hmunc13/Rab34 interaction. The Q111L mutant localized to the Golgi apparatus, but T66N was cytosolic. Localization of both mutants and Rab34WT was unchanged by DAG activation. The data suggest that DAG activation of hmunc13 causes it to be translocated to the Golgi, where it binds to GTP-bound Rab34 via MHD-2. Because Rab34 is known to regulate intracellular lysosome positioning, we propose that hmunc13 serves as an effector of Rab34, mediating lysosome-Golgi trafficking.  相似文献   

11.
Dong C  Wu G 《Cellular signalling》2007,19(11):2388-2399
Three Rab GTPases, Rab1, Rab2 and Rab6, are involved in protein transport between the endoplasmic reticulum (ER) and the Golgi. Whereas Rab1 regulates the anterograde ER-to-Golgi transport, Rab2 and Rab6 coordinate the retrograde Golgi-to-ER transport. We have previously demonstrated that Rab1 differentially modulates the export trafficking of distinct G protein-coupled receptors (GPCRs). In this report, we determined the role of Rab2 and Rab6 in the cell-surface expression and signaling of alpha(2B)-adrenergic (alpha(2B)-AR), beta(2)-AR and angiotensin II type 1 receptors (AT1R). Expression of the GTP-bound mutant Rab2Q65L significantly attenuated the cell-surface expression of both alpha(2B)-AR and beta(2)-AR, whereas the GTP-bound mutant Rab6Q72L selectively inhibited the transport of beta(2)-AR, but not alpha(2B)-AR. Similar results were obtained by siRNA-mediated selective knockdown of endogenous Rab2 and Rab6. Consistently, Rab2Q65L and Rab2 siRNA inhibited alpha(2B)-AR and beta(2)-AR signaling measured as ERK1/2 activation and cAMP production, respectively, whereas Rab6Q72L and Rab6 siRNA reduced signaling of beta(2)-AR, but not alpha(2B)-AR. Similar to the beta(2)-AR, AT1R expression at the cell surface and AT1R-promoted inositol phosphate accumulation were inhibited by Rab6Q72L. Furthermore, the nucleotide-free mutant Rab6N126I selectively attenuated the cell-surface expression of beta(2)-AR and AT1R, but not alpha(2B)-AR. These data demonstrate that Rab2 and Rab6 differentially influence anterograde transport and signaling of GPCRs. These data also provide the first evidence indicating that Rab6-coordinated retrograde transport selectively modulates intracellular trafficking and signaling of GPCRs.  相似文献   

12.
Rab2 immunolocalizes to pre-Golgi intermediates (vesicular-tubular clusters [VTCs]) that are the first site of segregation of anterograde- and retrograde-transported proteins and a major peripheral site for COPI recruitment. Our previous work showed that Rab2 Q65L (equivalent to Ras Q61L) inhibited endoplasmic reticulum (ER)-to-Golgi transport in vivo. In this study, the biochemical properties of Rab2 Q65L were analyzed. The mutant protein binds GDP and GTP and has a low GTP hydrolysis rate that suggests that Rab2 Q65L is predominantly in the GTP-bound-activated form. The purified protein arrests vesicular stomatitis virus glycoprotein transport from VTCs in an assay that reconstitutes ER-to-Golgi traffic. A quantitative binding assay was used to measure membrane binding of beta-COP when incubated with the mutant. Unlike Rab2 that stimulates recruitment, Rab2 Q65L showed a dose-dependent decrease in membrane-associated beta-COP when incubated with rapidly sedimenting membranes (ER, pre-Golgi, and Golgi). The mutant protein does not interfere with beta-COP binding but stimulates the release of slowly sedimenting vesicles containing Rab2, beta-COP, and p53/gp58 but lacking anterograde grade-directed cargo. To complement the biochemical results, we observed in a morphological assay that Rab2 Q65L caused vesiculation of VTCs that accumulated at 15 degrees C. These data suggest that the Rab2 protein plays a role in the low-temperature-sensitive step that regulates membrane flow from VTCs to the Golgi complex and back to the ER.  相似文献   

13.
The Ras small G protein-superfamily is a family of GTP hydrolases whose activity is regulated by GTP/GDP binding states. Rab6A, a member of the Ras superfamily, is involved in the regulation of vesicle trafficking, which is critical for endocytosis, biosynthesis, secretion, cell differentiation and cell growth. Rab6A exists in two isoforms, termed RabA and Rab6A′. Substitution of Gln72 to Leu72 (Q72L) at Rab6 family blocks GTP hydrolysis activity and this mutation usually causes the Rab6 protein to be constitutively in an active form. Here, we report the crystal structure of the human Rab6A′(Q72L) mutant form at 1.9 Å resolution. Unexpectedly, we found that Rab6A′(Q72L) possesses GDP/Mg2+ in the GTP binding pockets, which is formed by a flexible switch I and switch II. Large conformational changes were also detected in the switch I and switch II regions. Our structure revealed that the non-hydrolysable, constitutively active form of Rab6A′ can accommodate GDP/Mg2+ in the open conformation.  相似文献   

14.
GTP-binding proteins of the Rab family were cloned from human platelets using RT-PCR. Clones corresponding to two novel Rab proteins, Rab31 and Rab32, and to Rab11A, which had not been detected in platelets previously, were isolated. The coding sequence of Rab31 (GenBank accession no. U59877) corresponded to a 194 amino-acid protein of 21.6 kDa. The Rab32 sequence was extended to 1000 nucleotides including 630 nucleotides of coding sequence (GenBank accession no. U59878) but the 5' coding sequence was only completed later by others (GenBank accession no. U71127). Human Rab32 cDNA encodes a 225 amino-acid protein of 25.0 kDa with the unusual GTP-binding sequence DIAGQE in place of DTAGQE. Northern blots for Rab31 and Rab32 identified 4.4 kb and 1.35 kb mRNA species, respectively, in some human tissues and in human erythroleukemia (HEL) cells. Rabbit polyclonal anti-peptide antibodies to Rab31, Rab32 and Rab11A detected platelet proteins of 22 kDa, 28 kDa and 26 kDa, respectively. Human platelets were highly enriched in Rab11A (0.85 microg x mg of platelet protein(-1)) and contained substantial amounts of Rab32 (0.11 microg x mg protein(-1)). Little Rab31 was present (0.005 microg x mg protein(-1)). All three Rab proteins were found in both granule and membrane fractions from platelets. In rat platelets, the 28-kDa Rab32 was replaced by a 52-kDa immunoreactive protein. Rab31 and Rab32, expressed as glutathione S-transferase (GST)-fusion proteins, did not bind [alpha-(32)P]GTP on nitrocellulose blots but did bind [(35)S]GTP[S] in a Mg(2+)-dependent manner. Binding of [(35)S]GTP[S] was optimal with 5 microm Mg(2+)(free) and was markedly inhibited by higher Mg(2+) concentrations in the case of GST-Rab31 but not GST-Rab32. Both proteins displayed low steady-state GTPase activities, which were not inhibited by mutations (Rab31(Q64L) and Rab32(Q85L)) that abolish the GTPase activities of most low-M(r) GTP-binding proteins.  相似文献   

15.
A clone designated A.t.RAB6 encoding a small GTP-binding protein was isolated from a cDNA library of Arabidopsis thaliana leaf tissue. The predicted amino acid sequence was highly homologous to the mammalian and yeast counterparts, H.Rab6 and Ryh1/Ypt6, respectively. Lesser homology was found between the predicted Arabidopsis protein sequence and two small GTP-binding proteins isolated from plant species (44% homology to Zea mays Ypt1 and 43% homology to Nicotiana tabacum Rab5). Conserved stretches in the deduced amino acid sequence of A.t.Rab6 include four regions involved in GTP-binding, an effector region, and C-terminal cysteine residues required for prenylation and subsequent membrane attachment. Northern blot analysis demonstrated that A.t.Rab6 mRNA was expressed in root, leaf, stem, and flower tissues from A. thaliana with the highest levels present in roots. Escherichia coli produced histidine-tagged A.t.Rab6 protein-bound GTP, whereas a mutation in one of the guanine nucleotide-binding sites (asparagine122 to isoleucine) rendered it incapable of binding GTP. Functionally, the A.t.RAB6 gene was able to complement the temperature-sensitive phenotype of the YPT6 null mutant in yeast. The isolation of this gene will aid in the dissection of the machinery involved in soluble protein sorting at the trans-Golgi network of plants.  相似文献   

16.
Complementary DNAs (cDNAs) corresponding to three isoforms of rock bream (Oplegnathus fasciatus) Mx (RbMx1, RbMx2 and RbMx3) were cloned using RACE reactions. Analysis of deduced amino acid sequences revealed that the tripartite GTP-binding domain, the dynamine family signature and the leucine zipper repeat were present in all three rock bream Mx isoforms. Cloning of genomic DNA sequence and Southern blot analysis showed that three rock bream Mx isoforms were encoded by different genomic loci, and they were not alternative splicing variants, although some alternative splicing variants were found in RbMx1 and RbMx2. When comparing amino acid sequence identity, RbMx1 shares about 60-70% identities with other fish Mx proteins, whereas both RbMx2 and RbMx3 share slightly high identity of 70-90%. As a result of expression analysis using RT-PCR, RbMx1 was constitutively expressed in the spleen and kidney of rock bream yearling, but RbMx2 and RbMx3 were rarely detected in both organs. When injected with synthetic double-stranded RNA polyinosinic:polycytidylic acid (poly I:C), expression of all rock bream Mx isoforms was up-regulated in spleen and head kidney. RbMx1 was continuously up-regulated throughout experimental period of 72 h but RbMx2 and RbMx3 were down-regulated to almost non-detectable level at 48 h post-injection.  相似文献   

17.
Rab11 and Rab6 guanosine triphosphatases are associated with membranes of the recycling endosomes (REs) and Golgi complex, respectively. Evidence indicates that they sequentially regulate a retrograde transport pathway between these two compartments, suggesting the existence of proteins that must co-ordinate their functions. Here, we report the characterization of two isoforms of a protein, Rab6-interacting protein 1 (R6IP1), originally identified as a Rab6-binding protein. R6IP1 also binds to Rab11A in its GTP-bound conformation. In interphase cells, R6IP1 is targeted to the Golgi in a Rab6-dependent manner but can associate with Rab11-positive compartments when the level of Rab11A is increased within the cells. Fluorescence resonance energy transfer analysis using fluorescence lifetime imaging shows that the overexpression of R6IP1 promotes an interaction between Rab11A and Rab6 in living cells. Accordingly, the REs marked by Rab11 and transferrin receptor are depleted from the cell periphery and accumulate in the pericentriolar area. However, endosomal and Golgi membranes do not appear to fuse with each other. We also show that R6IP1 function is required during metaphase and cytokinesis, two mitotic steps in which a role of Rab6 and Rab11 has been previously documented. We propose that R6IP1 may couple Rab6 and Rab11 function throughout the cell cycle.  相似文献   

18.
Rab proteins belong to a subfamily of small GTP-binding protein genes of the Ras superfamily and play an important role in intracellular vesicular targeting. The presence of members of this protein family was examined in Caco-2 cells by a PCR-based strategy. Twenty-five different partial cDNA sequences were isolated, including 18 Rab protein family members. Seven novel human sequences, representing Rab2B, Rab6A', Rab6B, Rab10, Rab19B, Rab21 and Rab22A, were identified. For one clone, encoding Rab21, full-length cDNA was isolated from a Caco-2 cDNA library. Northern blot analysis showed a ubiquitous expression pattern of Rab21. To study Rab21 protein expression in Caco-2 cells, polyclonal antibodies were raised against GST-Rab21 fusion protein and characterised. The antibodies recognised Rab21 as a protein of approximately 25 kDa. Interestingly, the protein shows a general ER-like staining in nonpolarised Caco-2 cells in contrast to an apically located vesicle-like staining in polarised Caco-2 cells. Furthermore, immunohistochemical staining on human jejunal tissue showed a predominant expression of Rab21 in the epithelial cell layer with high expression levels in the apical region, whereas stem cells in the crypts were negative. We therefore suggest an alternative role for Rab21 in the regulation of vesicular transport in polarised intestinal epithelial cells.  相似文献   

19.
Nahm MY  Kim SW  Yun D  Lee SY  Cho MJ  Bahk JD 《Plant & cell physiology》2003,44(12):1341-1349
Rab7 is a small GTP-binding protein important in early to late endosome/lysosome vesicular transport in mammalian cells. We have isolated a Rab7 cDNA clone, OsRab7, from a cold-treated rice cDNA library by the subtraction screening method. The cDNA encodes a polypeptide of 206 amino acids with a calculated molecular mass of about 23 kDa. Its predicted amino acid sequence shows significantly high identity with the sequences of other Rab7 proteins. His-tagged OsRab7 bound to radiolabeled GTPgammaS in a specific and stoichiometric manner. Biochemical and structural properties of the Rab7 wild type (WT) protein were compared to those of Q67L and T22N mutants. The detergent 3-([3-cholamidopropyl]dimethylammonio)-1-propane sulfonate (CHAPS) increased the guanine nucleotide binding and hydrolysis activities of Rab7WT. The OsRab7Q67L mutant showed much lower GTPase activity compared to the WT protein untreated with CHAPS, and the T22N mutant showed no GTP binding activity at all. The OsRab7Q67L mutant was constitutively active for guanine nucleotide binding while the T22N mutant (dominant negative) showed no guanine nucleotide binding activity. When bound to GTP, the Rab7WT and the Q67L mutants were protected from tryptic proteolysis. The cleavage pattern of the Rab7T22N mutant, however, was not affected by GTP addition. Northern and Western blot analyses suggested that OsRab7 is distributed in various tissues of rice. Furthermore, expression of a rice Rab7 gene was differentially regulated by various environmental stimuli such as cold, NaCl, dehydration, and ABA. In addition, subcellular localization of OsRab7 was investigated in the Arabidopsis protoplasts by a double-labeling experiment using GFP-fused OsRab7 and FM4-64. GFP-OsRab7 is localized to the vacuolar membrane, suggesting that OsRab7 is implicated in a vesicular transport to the vacuole in plant cells.  相似文献   

20.
The Rab6 GTPase regulates a retrograde transport route connecting endosomes and the endoplasmic reticulum (ER) via the Golgi apparatus. Recently it was shown that active (GTP-loaded) Rab6A regulates intracellular processing of the amyloid precursor protein (APP). To characterize the role of Rab6A in APP trafficking and to identify effector proteins of the active Rab6A protein, we screened a human placenta cDNA library using the yeast two-hybrid system. We isolated an interacting cDNA clone encoding part of the adaptor protein mint3. The interaction between Rab6A and mint3 is GTP-dependent and requires the complete phosphotyrosine-binding (PTB) domain of the mint protein, which also mediates the association with APP. By confocal microscopy we show that Rab6A, mint3 and APP co-localize at Golgi membranes in HeLa cells. Density gradient centrifugation of cytosolic extracts confirms a common distribution of these three proteins. Our data suggest that mint3 links Rab6A to APP traffic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号