共查询到20条相似文献,搜索用时 15 毫秒
1.
Human indoleamine 2,3-dioxygenase (hIDO), a monomeric heme enzyme, catalyzes the oxidative degradation of l-Trp and other indoleamine derivatives. Using Fourier transform infrared and optical absorption spectroscopy, we have investigated the interplay between ferrous hIDO, the ligand analog CO, and the physiological substrate l-Trp. These data provide the long sought evidence for two distinct l-Trp binding sites. Upon photodissociation from the heme iron at T > 200 K, CO escapes into the solvent. Concomitantly, l-Trp exits the active site and, depending on the l-Trp concentration, migrates to a secondary binding site or into the solvent. Although l-Trp is spectroscopically silent at this site, it is still noticeable due to its pronounced effect on the CO association kinetics, which are significantly slower than those of l-Trp-free hIDO. l-Trp returns to its initial site only after CO has rebound to the heme iron. 相似文献
2.
Earlier studies have suggested that indoleamine 2,3-dioxygenase (IDO) has a wide tissue distribution in mammals. However, detailed information on its cellular localization and also the levels of expression in various tissues is still scarce. In the present study, we sought to determine the cellular localization of IDO and also to quantify the level of its expression in various mouse tissues by using the branched DNA signal amplification assay, Western blotting, and immunohistochemical staining. The highest levels of constitutive IDO expression were found to be selectively present in the caput of epididymis, except for its initial segment. IDO expression was also detected inside the luminal compartment and even in the stereocilia within this region. In the prostate, high levels of IDO were selectively expressed in the capsular cells. In addition, high levels of IDO expression were also selectively detected in certain types of cells in the placenta, spleen, thymus, lung, and digestive tract. Notably, the morphological features of most of the positively stained cells in these organs closely resembled those of antigen-presenting cells. Based on the tissue distribution and cellular localization characteristics of IDO, it is hypothesized that its expression may serve two main functions: one is to deplete tryptophan in an enclosed microenvironment (such as in the epididymal duct lumen) to prevent bacterial or viral infection, and the other is to produce bioactive tryptophan catabolites that would serve to suppress T-cell–mediated immune responses against self-antigens, fetal antigens, or allogeneic antigens, in different situations. (J Histochem Cytochem 58:17–28, 2010) 相似文献
3.
Indoleamine 2,3-dioxygenase (IDO), a tryptophan-catabolizing intracellular enzyme of the L-kynurenine pathway, causes preneoplastic cells and tumor cells to escape the immune system by inducing immune tolerance; this mechanism might be associated with the development and progression of human malignancies. In the present study, we investigated the role of IDO in diethylnitrosamine (DEN)-induced hepatocarcinogenesis by using IDO-knockout (KO) mice. To induce hepatocellular carcinoma (HCC), hepatic adenoma, and preneoplastic hepatocellular lesions termed foci of cellular alteration (FCA), male IDO-wild-type (WT) and IDO-KO mice with a C57BL/6J background received a single intraperitoneal injection of DEN at 2 weeks of age. The mice were sacrificed to evaluate the development of FCA and hepatocellular neoplasms. HCC overexpressed IDO and L-kynurenine compared to surrounding normal tissue in the DEN-treated IDO-WT mice. The number and cell proliferative activity of FCAs, and the incidence and multiplicity of HCC were significantly greater in the IDO-WT than in the IDO-KO mice. The expression levels of the IDO protein, of L-kynurenine, and of IFN-γ, COX-2, TNF-α, and Foxp3 mRNA were also significantly increased in the DEN-induced hepatic tumors that developed in the IDO-WT mice. The mRNA expression levels of CD8, perforin and granzyme B were markedly increased in hepatic tumors developed in IDO-KO mice. Moreover, Foxp3-positive inflammatory cells had infiltrated into the livers of DEN-treated IDO-WT mice, whereas fewer cells had infiltrated into the livers of IDO-KO mice. Induction of IDO and elevation of L-kynurenine might play a critical role in both the early and late phase of liver carcinogenesis. Our findings suggest that inhibition of IDO might offer a promising strategy for the prevention of liver cancer. 相似文献
4.
The epididymis maintains a state of immune tolerance towards spermatozoa while also protecting them and itself against infection and acute inflammation. The immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (Ido1) participates in this delicate local equilibrium. Using the mouse Ido1−/− model, we show here that the absence of IDO1 expression leads in the epididymis but not in serum to (1) an increase in the inflammatory state as evidenced by changes in the content of cytokines and chemokines, (2) the engagement of a Th1-driven inflammatory response as evidenced by changes in the Th17/Treg as well as Th1/Th2 equilibria, as well as (3) differences in the content of lipid intermediates classically involved in inflammation. Despite this more pronounced inflammatory state, Ido1−/− animals succeed in preserving the local epididymal immune situation due to the activation of compensatory mechanisms that are discussed. 相似文献
5.
BackgroundIndoleamine 2,3-dioxygenase (IDO), which is mainly expressed in activated dendritic cells, catabolizes tryptophan to kynurenine and other downstream catabolites. It is known to be an immune mediator in HIV pathogenesis. The impact of anti-retroviral therapy on its activity has not been well established. MethodsWe measured systemic IDO activity (the ratio of plasma kynurenine to tryptophan) in HIV-infected patients before and after highly active antiretroviral therapy (HAART) and its association with a microbial translocation marker, soluble CD14 (sCD14). ResultsAmong 76 participants, higher baseline IDO activity was associated with lower CD4 + T cell counts ( P<0.05) and higher plasma sCD14 levels ( P<0.001). After 1 year of HAART, IDO activity decreased significantly ( P<0.01), but was still higher than in healthy controls ( P<0.05). The baseline IDO activity did not predict CD4 + T cell recovery after 1 year of therapy. The percentages of myeloid and plasmacytoid dendritic cells were not correlated with IDO activity. ConclusionsIDO activity is elevated in HIV-infected patients, which is partially associated with microbial translocation. HAART reduced, but did not normalize the activity of IDO. 相似文献
6.
目的:通过细胞培养和在体实验探讨吲哚胺2,3-双加氧酶(indoleamine 2,3-dioxygenase,IDO)基因转染后对肝癌细胞凋亡的影响及相关细胞免疫机制的研究.方法:提取健康人外周血中的T细胞利用细胞培养和基因转染技术将T细胞和肝癌细胞混合培养.实验分为6组:根据是否加入D-1-MT分为未干预组和干预组... 相似文献
7.
Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in conversion of tryptophan to kynurenines, feeding de novo nicotinamide synthesis. IDO orchestrates materno-foetal tolerance, increasing human reproductive fitness. IDO mediates immune suppression through depletion of tryptophan required by T lymphocytes and other mechanisms. IDO is expressed by alternatively activated macrophages, suspected to play a key role in tuberculosis (TB) pathogenesis. Unlike its human host, Mycobacterium tuberculosis can synthesize tryptophan, suggesting possible benefit to the host from infection with the microbe. Intriguingly, nicotinamide analogues are used to treat TB. In reviewing this field, it is postulated that flux through the nicotinamide synthesis pathway reflects switching between aerobic glycolysis and oxidative phosphorylation in M. tuberculosis-infected macrophages. The evolutionary cause of such shifts may be ancient mitochondrial behavior related to reproductive fitness. Evolutionary perspectives on the IDO pathway may elucidate why, after centuries of co-existence with the Tubercle bacillus, humans still remain susceptible to TB disease. 相似文献
8.
Indoleamine 2,3-dioxygenase (IDO), which is mainly expressed in activated dendritic cells, is known as a regulator of immune responses. However, the role of IDO in immune responses against fungal corneal infection has not been investigated. To evaluate the regulatory mechanisms of IDO in fungal inflammation, we resorted to human corneal epithelial cells (HCECs), known as the first barrier of cornea against pathogenic microorganisms. We found that IDO was significantly up-regulated in corneal epithelium infected with Aspergillus fumigatus ( A. fumigatus) and HCECs incubated with spores of A. fumigatus. Furthermore, IDO inhibitor (1-methyltryptophan, 1-MT) enhanced inflammatory cytokines IL-1β and IL-6 expression which were up-regulated by A. fumigatus spores infection. Dectin-1, as one of the important C-type lectin receptors, can identify β-glucan, and mediate fungal innate immune responses. In the present study, pre-treatment with curdlan, a Dectin-1 agonist, further enhanced IDO expression compared with A. fumigatus stimulation. While laminarin, the Dectin-1 specific inhibitor, partially inhibited IDO expression stimulated by A. fumigatus. Further studies demonstrated inhibition of IDO activity amplified the expressions of inflammatory cytokines IL-1β and IL-6 induced by activation of Dectin-1. These results suggested that IDO was involved in the immune responses of fungal keratitis. The activation of Dectin-1 may contribute to A. fumigatus spores-induced up-regulation of IDO. 相似文献
10.
BackgroundParacoccidioidomycosis, a primary fungal infection restricted to Latin America, is acquired by inhalation of fungal particles. The immunoregulatory mechanisms that control the severe and mild forms of paracoccidioidomycosis are still unclear. Indoleamine 2,3-dioxygenase (IDO), an IFN-γ induced enzyme that catalyzes tryptophan metabolism, can control host-pathogen interaction by inhibiting pathogen growth, T cell immunity and tissue inflammation. Methodology/Principal FindingsIn this study, we investigated the role of IDO in pulmonary paracoccidioidomycosis of susceptible and resistant mice. IDO was blocked by 1-methyl-dl-tryptophan (1MT), and fungal infection studied in vitro and in vivo. Paracoccidioides brasiliensis infection was more severe in 1MT treated than untreated macrophages of resistant and susceptible mice, concurrently with decreased production of kynurenines and IDO mRNA. Similar results were observed in the pulmonary infection. Independent of the host genetic pattern, IDO inhibition reduced fungal clearance but enhanced T cell immunity. The early IDO inhibition resulted in increased differentiation of dendritic and Th17 cells, accompanied by reduced responses of Th1 and Treg cells. Despite these equivalent biological effects, only in susceptible mice the temporary IDO blockade caused sustained fungal growth, increased tissue pathology and mortality rates. In contrast, resistant mice were able to recover the transitory IDO blockade by the late control of fungal burdens without enhanced tissue pathology. Conclusions/SignificanceOur studies demonstrate for the first time that in pulmonary paracoccidioidomycosis, IDO is an important immunoregulatory enzyme that promotes fungal clearance and inhibits T cell immunity and inflammation, with prominent importance to susceptible hosts. In fact, only in the susceptible background IDO inhibition resulted in uncontrolled tissue pathology and mortality rates. Our findings open new perspectives to understand the immunopathology of paracoccidioidomycosis, and suggest that an insufficient IDO activity could be associated with the severe cases of human PCM characterized by inefficient fungal clearance and excessive inflammation. 相似文献
11.
Mutants of Neurospora crassa that are resistant to 4-methyl-tryptophan were found to differ in ability to synthesize kynureninase in the presence of the inducers kynurenine, 3-OH-kynurenine, N-formyl-kynurenine, tryptophan, and indole. One strain (mtr26), although incapable of accumulating intracellular pools of these compounds, showed induced synthesis of kynureninase, whereas the second (mtr21) could neither accumulate nor be induced by them. Strain mtr21, with the suppressor su(mtr), could not be induced by indole but was induced by tryptophan and kynurenine derivatives. These results suggest that the mtr mutation, in addition to altering the ability of these strains to concentrate tryptophan and its metabolites, may have some effect on either the intracellular distribution of tryptophan or directly on the synthesis of kynureninase. 相似文献
12.
To assess the role of the kynurenine pathway in the pathology of Alzheimer''s disease (AD), the expression and localization of key components of the kynurenine pathway including the key regulatory enzyme tryptophan 2,3 dioxygenase (TDO), and the metabolites tryptophan, kynurenine, kynurenic acid, quinolinic acid and picolinic acid were assessed in different brain regions of triple transgenic AD mice. The expression and cell distribution of TDO and quinolinic acid, and their co-localization with neurofibrillary tangles and senile β amyloid deposition were also determined in hippocampal sections from human AD brains. The expression of TDO mRNA was significantly increased in the cerebellum of AD mouse brain. Immunohistochemistry demonstrated that the density of TDO immuno-positive cells was significantly higher in the AD mice. The production of the excitotoxin quinolinic acid strongly increased in the hippocampus in a progressive and age-dependent manner in AD mice. Significantly higher TDO and indoleamine 2,3 dioxygenase 1 immunoreactivity was observed in the hippocampus of AD patients. Furthermore, TDO co-localizes with quinolinic acid, neurofibrillary tangles-tau and amyloid deposits in the hippocampus of AD. These results show that the kynurenine pathway is over-activated in AD mice. This is the first report demonstrating that TDO is highly expressed in the brains of AD mice and in AD patients, suggesting that TDO-mediated activation of the kynurenine pathway could be involved in neurofibrillary tangles formation and associated with senile plaque. Our study adds to the evidence that the kynurenine pathway may play important roles in the neurodegenerative processes of AD. 相似文献
14.
邻苯二酚是所有芳香族化合物降解过程中的重要的中间产物,其降解有邻位和间位裂解两条裂解途径,分别由邻苯二酚1,2-双加氧酶(C12O)和邻苯二酚2,3-双加氧酶(C23O)催化裂解。本综述简要介绍了邻苯二酚2,3-双加氧酶的结构和功能的研究进展。 相似文献
15.
Dendritic cells (DC) play a critical role in modulating antigen-specific immune responses elicited by T cells via engagement of the prototypic T cell costimulatory receptor CD28 by the cognate ligands CD80/CD86, expressed on DC. Although CD28 signaling in T cell activation has been well characterized, it has only recently been shown that CD80/CD86, which have no demonstrated binding domains for signaling proteins in their cytoplasmic tails, nonetheless also transduce signals to the DC. Functionally, CD80/CD86 engagement results in DC production of the pro-inflammatory cytokine IL-6, which is necessary for full T cell activation. However, ligation of CD80/CD86 by CTLA4 also induces DC production of the immunosuppressive enzyme indoleamine 2,3-dioxygenase (IDO), which depletes local pools of the essential amino acid tryptophan, resulting in blockade of T cell activation. Despite the significant role of CD80/CD86 in immunological processes and the seemingly opposing roles they play by producing IL-6 and IDO upon their activation, how CD80/CD86 signal remains poorly understood. We have now found that cross-linking CD80/CD86 in human DC activates the PI3K/AKT pathway. This results in phosphorylation/inactivation of its downstream target, FOXO3A, and alleviates FOXO3A-mediated suppression of IL-6 expression. A second event downstream of AKT phosphorylation is activation of the canonical NF-κB pathway, which induces IL-6 expression. In addition to these downstream pathways, we unexpectedly found that CD80/CD86-induced PI3K signaling is regulated by previously unrecognized cross-talk with NOTCH1 signaling. This cross-talk is facilitated by NOTCH-mediated up-regulation of the expression of prolyl isomerase PIN1, which in turn increases enzyme activity of casein kinase II. Subsequently, phosphatase and tensin homolog (which suppresses PI3K activity) is inactivated via phosphorylation by casein kinase II. This results in full activation of PI3K signaling upon cross-linking CD80/CD86. Similar to IL-6, we have found that CD80/CD86-induced IDO production by DC at late time points is also dependent upon the PI3K → AKT → NF-κB pathway and requires cross-talk with NOTCH signaling. These data further suggest that the same signaling pathways downstream of DC CD80/CD86 cross-linking induce early IL-6 production to enhance T cell activation, followed by later IDO production to self-limit this activation. In addition to characterizing the pathways downstream of CD80/CD86 in IL-6 and IDO production, identification of a novel cross-talk between NOTCH1 and PI3K signaling may provide new insights in other biological processes where PI3K signaling plays a major role. 相似文献
16.
本文在大肠杆菌/枮草芽孢杆菌间的穿梭质粒pTG 402的基础上构建了几个新的带有显色标志基闲xylE的表达质粒,摸索了该基因所编码的邻苯二酚2,3-双加氧酶(CatO_2ase)的表达条件,分析了该酶一级结构与二级结构的亲水性和疏水性,测定了它在大肠杆菌中的产量与分布。结果表明,CatO_2ase与各质粒的表达量不等,表达量高低与培养时间、宿主菌及诱导与否等影响因素有关;表达后有部分酶可在胞外测出,但大部分仍定域于膜内,亲、疏水性分析示该酶不具分泌性蛋白的显著特点。因该酶易于检测和定量,可作为一种选择性标记和监测指示系统在基因工程中推广应用,同时亦为用基因工程菌消除芳烃类化合物的污染提供了理论依据。 相似文献
17.
Pathophysiology of depression in elderlies is linked to aging-associated increase in indoleamine 2,3-dioxygenase (IDO) levels and activity and kynurenine (Kyn) metabolites. Moreover, these aging-induced changes may alter the brain’s responses to stress. Growing evidence suggested that young plasma can positively affect brain dysfunctions in old age. The present study aimed to investigate whether the antidepressant effects of young plasma administration in aged rats subjected to chronic unpredictable mild stress (CUMS) and underlying mechanisms, focusing on the prefrontal cortex (PFC). Young (3 months old) and aged (22 months old) male rats were divided into five groups; young control, aged control, aged rats subjected to CUMS (A?+?CUMS), aged rats subjected to CUMS and treated with young plasma (A?+?CUMS?+?YP), and aged rats subjected to CUMS and treated with old plasma (A?+?CUMS?+?OP). Plasma was injected (1 ml, intravenously) three times per week for four weeks. Young plasma significantly improved CUMS-induced depressive-like behaviors, evidenced by the increased sucrose consumption ratio in the sucrose preference test and the reduced immobility time in the forced swimming test. Furthermore, young plasma markedly reduced the levels of interferon-gamma (IFN-γ), IDO, Kyn, and Kyn to tryptophan (Kyn/Trp) ratio in PFC tissue. Expression levels of the serotonin transporter and growth-associated protein (GAP)-43 were also significantly increased after chronic administration of young plasma. These findings provide evidence for the antidepressant effect of young plasma in old age; however, whether it improves depressive behaviors or faster recovery from stress-induced deficits is required to be elucidated. 相似文献
18.
Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes. Mammalian IDO expression
is induced by cytokines and has antimicrobial and immunomodulatory effects. A major role of mammalian TDO is to supply nicotinamide
adenine dinucleotide (NAD +). In fungi, the IDO homologue is thought to be expressed constitutively and supply NAD +, as TDO is absent from their genomes. Here, we reveal the distribution of IDO genes among fungal species and characterize
their enzymatic activity. The yeast, Saccharomyces cerevisiae has only one IDO gene, whereas the koji-mold, Aspergillus oryzae has two genes, IDOα and IDOβ. The A. oryzae IDOα showed more similar enzymatic properties to those of S. cerevisiae IDO than IDOβ, suggesting that the A. oryzae IDOα is a functional homologue of the S. cerevisiae IDO. From the IDOβ gene, two isoforms, IDOβ and IDOβ + could be generated by alternative splicing. The latter contained a 17 amino acids insertion which were encoded by the first
intron of IDOβ gene. In comparison to IDOβ +, bacterially expressed IDOβ showed much lower K
m value and more than five-times faster V
max value, resulting in 85 times higher catalytic efficiency; i.e., the removal of the domain encoded by the first intron from
IDOβ + increases its enzymatic activity drastically. This might be a unique regulation mechanism of the l-Trp metabolism in the A. oryzae. The levo-1-methyl tryptophan ( l-1MT) is a good inhibitor of both IDO1 and IDO2. However, the activity of fungal IDOs tested was not inhibited at all by l-1MT. 相似文献
19.
Regulation of adaptive immune responses is critically important to allow the adaptive immune system to eradicate infections while causing minimal collateral damage to infected tissues, as well as preventing autoimmune disease mediated by self-reactive lymphocytes. Tumors and pathogens that cause persistent infections can subvert immunoregulatory processes to protect themselves from destruction by T cells, to the detriment of patients. A growing body of evidence supports the hypothesis that specialized subsets of dendritic cells expressing indoleamine 2,3 dioxygenase (IDO), which catalyzes oxidative catabolism of tryptophan, play critical roles in regulation of T cell-mediated immune responses. IDO-dependent T cell suppression by dendritic cells suggests that biochemical changes due to tryptophan catabolism have profound effects on T cell proliferation, differentiation, effector functions, and viability. This has critical implications for immunotherapeutic manipulations designed for patients with cancer and chronic infectious diseases. In this review, I focus on dendritic cells that can express IDO, and which acquire potent T cell regulatory functions as a consequence. 相似文献
20.
Neurodegenerative diseases provoke robust immunological reactions in the central nervous system (CNS), which further deteriorate the neural tissue damage. We hypothesized that the expression levels of indoleamine 2,3-dioxygenase (IDO), an enzyme that has potent immune suppressive activities, in neural stem cells (NSCs) would have synergistic therapeutic effects against neurodegenerative diseases, since NSCs themselves have low IDO expression. In this study, the synergistic immune suppressive effects of rat fetal NSCs expressing IDO (rfNSCs-IDO) were validated by mixed leukocyte reaction (MLR) in vitro and an experimental autoimmune encephalomyelitis (EAE) animal model in vivo. rfNSCs-IDO showed significantly more suppressive effects on T cell proliferation in the MLR compared to control rfNSCs (rfNSCs-Cont). Importantly, IDO inhibition using 1-methyl-DL-tryptophan (1-MT), an IDO inhibitor, reversed the synergistic effects, confirming IDO-specific effects in rfNSCs-IDO. In the EAE animal model, systemic rfNSCs-IDO injections resulted in significant local immune suppression in the cervical lymph nodes and CNS, evidenced by a reduction in the number of activated T lymphocytes and an increase in regulatory T cell numbers, which induced significantly fewer clinical symptoms and faster recovery. In contrast, rfNSCs-Cont failed to reduce symptoms in the EAE animal models, although they showed local immune suppression, which was significantly less than that in rfNSCs-IDO. Taken together, IDO expression in NSCs synergistically potentiates the immune suppression activities of NSCs and could be applicable for the development of therapeutic modalities against various neurodegenerative diseases. 相似文献
|