首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Myocilin is a gene linked directly to juvenile- and adult-onset open angle glaucoma. Mutations including Gln368stop (Q368X) and Pro370Leu (P370L) have been identified in patients. The exact role of myocilin and its functional association with glaucoma are still unclear. In the present study, we established tetracycline-inducible (Tet-on) wild type and mutant myocilin-green fluorescence protein (GFP) expressing RGC5 stable cell lines and studied the changes in cell migration and barrier function upon induction.

Methodology/Principal Findings

After several rounds of selection, clones that displayed low, moderate, or high expression of wild type, Q368X or P370L myocilin-GFP upon doxycycline (Dox) induction were obtained. The levels of wild type and mutant myocilin-GFP in various clones were confirmed by Western blotting. Compared to non-induced controls, the cell migration was retarded, the actin stress fibers were fewer and shorter, and the trypsinization time needed for cells to round up was reduced when wild type or mutant myocilin was expressed. The barrier function was in addition aberrant following induced expression of wild type, Q368X or P370L myocilin. Immunoblotting further showed that tight junction protein occludin was downregulated in induced cells.

Conclusions/Significance

Tet-on inducible, stable RGC5 cell lines were established. These cell lines, expressing wild type or mutant (Q368X or P370L) myocilin-GFP upon Dox induction, are valuable in facilitating studies such as proteomics, as well as functional and pathogenesis investigations of disease-associated myocilin mutants. The barrier function was found impaired and the migration of cells was hindered with induced expression of wild type and mutant myocilin in RGC5 cell lines. The reduction in barrier function might be related to the declined level of occludin. The retarded cell migration was consistent with demonstrated myocilin phenotypes including the loss of actin stress fibers, lowered RhoA activities and compromised cell-matrix adhesiveness.  相似文献   

2.

Background

Myocilin (MYOC) is a gene linked directly to juvenile- and adult-onset open angle glaucoma. Mutations including Pro370Leu (P370L) and Gln368stop (Q368X) have been identified in patients. In the present study, we investigated the processing of myocilin in human trabecular meshwork (TM) cells as well as in inducible, stable RGC5 cell lines.

Methodology/Principal Findings

The turnover and photoactivation experiments revealed that the endogenous myocilin in human trabecular meshwork (TM) cells was a short-lived protein. It was found that the endogenous myocilin level in TM cells was increased by treatment of lysosomal and proteasomal inhibitors, but not by autophagic inhibitor. Multiple bands immunoreactive to anti-ubiquitin were seen in the myocilin pull down, indicating that myocilin was ubiquitinated. In inducible cell lines, the turnover rate of overexpressed wild-type and mutant P370L and Q368X myocilin-GFP fusion proteins was much prolonged. The proteasome function was compromised and autophagy was induced. A decreased PSMB5 level and an increased level of autophagic marker, LC3, were demonstrated.

Conclusions/Significance

The current study provided evidence that in normal homeostatic situation, the turnover of endogenous myocilin involves ubiquitin-proteasome and lysosomal pathways. When myocilin was upregulated or mutated, the ubiquitin-proteasome function is compromised and autophagy is induced. Knowledge of the degradation pathways acting on myocilin can help in design of novel therapeutic strategies for myocilin-related glaucoma.  相似文献   

3.
Myocilin is a gene linked to the most common form of glaucoma, a major blinding disease. The trabecular meshwork (TM), a specialized eye tissue, is believed to be involved, at least in part, in the development of glaucoma. The myocilin expression is known to be up-regulated by glucocorticoids in TM cells, and an altered myocilin level may be the culprit in conditions such as corticosteroid glaucoma. Wild type myocilin, when transfected into cultured human TM cells, induced a dramatic loss of actin stress fibers and focal adhesions. Myocilin transfectants displayed a heightened sensitivity to trypsin. Adhesion to fibronectin, collagens, and vitronectin was compromised. The fibronectin deposition and the levels of fibronectin protein and mRNA were also reduced in myocilin transfectants. The fibronectin deposition could be restored by treatment with lysophosphatidic acid, a Rho stimulator. Assays further revealed that upon myocilin overexpression, the activity of RhoA was diminished, whereas the cAMP level and the protein kinase A (PKA) activity were augmented. Myocilin protein did not affect actin polymerization. The collapse of actin stress fibers and increased trypsin sensitivity from myocilin transfection could be reverted by co-expression of constitutively active RhoA or by treatment with PKA inhibitor H-89. The PKA activity, however, was not modified by co-expression of either constitutively active or dominant negative RhoA. These results demonstrate that myocilin has a de-adhesive activity and triggers signaling events. cAMP/PKA activation and the downstream Rho inhibition are possible mechanisms by which myocilin in overabundance may lead to TM cell or tissue damage.  相似文献   

4.

Background

Glaucoma is the leading cause of irreversible blindness in the world. Recent evidence indicates a role for genetic susceptibility to primary open-angle glaucoma (POAG). The relation between myocilin polymorphisms and POAG susceptibility has been studied in different populations.

Methods

A meta-analysis of 32 published genetic association case-control studies, which examined the relation between POAG and the R46X, R76K, Y347Y, T353I, and Q368X polymorphisms of the myocilin gene, was carried out.

Results

In meta-analysis, significant associations were observed between POAG risk and two myocilin polymorphisms with summarized odds ratio of 4.68 (95%CI, 2.02–10.85) for Q368X and 2.17 (95% CI, 1.32–3.57) for T353I. Both Q368X and T353I were significantly associated with high-tension glaucoma, with summarized odds ratio of 4.26 (1.69, 10.73) and 2.26 (1.37–3.72). In Westerners, significant association was observed for Q368X mutation (odds ratio, 5.17; 95% CI, 2.16–12.40). However, in Asians it was for T353I (odds ratio, 2.17; 95% CI, 1.32–3.57).

Conclusions

There is strong evidence that myocilin polymorphisms are associated with POAG susceptibility, and the prevalence of myocilin mutations might be ethnicity-dependent in Caucasians for Q368X and in Asians for T353I.  相似文献   

5.
Myocilin is a secreted glycoprotein of unknown function that is ubiquitously expressed in many human organs, including the eye. Mutations in this protein produce glaucoma, a leading cause of blindness worldwide. To explore the biological role of myocilin and the pathogenesis of glaucoma, we have analyzed the expression of recombinant wild type and four representative pathogenic myocilin mutations (E323K, Q368X, P370L, and D380A) in transiently transfected cell lines derived from ocular and nonocular tissues. We found that wild type myocilin undergoes an intracellular endoproteolytic processing at the C terminus of Arg226. This cleavage predicts the production of two fragments, one of 35 kDa containing the C-terminal olfactomedin-like domain, and another of 20 kDa containing the N-terminal leucine zipper-like domain. Here we have analyzed the 35-kDa processed fragment, and we have found that it is co-secreted with the nonprocessed protein. Western immunoblot analyses showed that human aqueous humor and some ocular tissues also contain the processed 35-kDa myocilin, indicating that the endoproteolytic cleavage occurs in vivo. Mutant myocilins accumulated in the endoplasmic reticulum of transfected cells as insoluble aggregates. Interestingly, the four pathogenic myocilins inhibited the endoproteolytic processing with varying efficiency. Furthermore, the mutation P370L, which produces the most severe glaucoma phenotype, also elicited the most potent endoproteolytic cleavage inhibition. We propose that the endoproteolytic processing might regulate the activity of myocilin and that the inhibition of the processing by pathogenic mutations impairs the normal role of myocilin.  相似文献   

6.
The trabecular meshwork (TM), a specialized eye tissue, is a major site for regulation of the aqueous humor outflow. Malfunctioning of this tissue is believed to be responsible for development of glaucoma, a blinding disease. Myocilin is a gene linked to the most common form of glaucoma. The protein product has been localized to both intra and extracellular sites, but its function still remains unclear. This study was to determine whether extracellular myocilin presented in the matrix affects adhesion, morphology, and migratory and phagocytic activities of human TM cells in culture. Cell adhesion assays indicated that TM cells, while adhering readily on fibronectin, failed to attach on recombinant myocilin purified from bacterial cultures. Adhesion on fibronectin was also compromised by myocilin in a dose dependent manner. Myocilin in addition triggered TM cells to assume a stellate appearance with broad cell bodies and microspikes. Loss of actin stress fibers and focal adhesions was observed. TM cell migration on fibronectin/myocilin to scratched wounds was reduced compared to fibronectin controls. Myocilin, however, had little impact on phagocytic activities of TM cells. Cell attachment on fibronectin and migration of corneal fibroblasts, a control cell type, were not altered by myocilin. These results demonstrate that extracellular myocilin elicits anti-adhesive and counter-migratory effects on TM cells. Myocilin in the matrix of tissues could be exerting a similar influence on TM cells in vivo, impacting the flexibility and resilience required for maintenance of the normal aqueous outflow.  相似文献   

7.
Myocilin基因是与原发性开角型青光眼成因有关的基因。其蛋白产物myocilin蛋白是一种分泌型糖蛋白,具有特征性区域:N端亮氨酸拉链区,中央链接区,C端类嗅质蛋白(嗅素)区。眼组织中,小梁网myocilin蛋白表达水平最高且在细胞内外均可检测到。细胞内myocilin蛋白由小梁网细胞以外泌体样囊泡形式释放至胞外,突变时分泌受阻并异常聚集,使细胞致敏诱发凋亡。细胞外myocilin蛋白通过与一种或多种细胞外基质蛋白相互作用影响细胞的形态、粘接、迁移活动,调节细胞外基质的成分和结构,从而影响房水流出系统。  相似文献   

8.
Overexpression of myocilin in cultured human trabecular meshwork cells   总被引:3,自引:0,他引:3  
The trabecular meshwork, a specialized eye tissue, is a major site for regulation of the aqueous humor outflow. Malfunctioning of the trabecular meshwork is believed to be responsible for development of glaucoma, a blinding disease. Myocilin is a gene linked to the most common form of glaucoma. Its expression is known to be upregulated by glucocorticoids in trabecular meshwork cells and the altered myocilin level may be the culprit for glaucomatous conditions such as corticosteroid-induced glaucoma. In this study, we examined the influence of myocilin overexpression on the adhesion, spreading, migration, phagocytosis, and apoptosis of human trabecular meshwork cells in culture. When the myocilin expression was increased by 3- to 4-fold, the transfectants showed a dramatic loss of actin stress fibers and focal adhesions. Cell adhesion to fibronectin and spreading were also compromised. Myocilin thus appeared to have a de-adhesive activity, similar to that reported extensively with matricellular proteins. The transfected cells in addition displayed an increased sensitivity to apoptosis. These results demonstrate that overexpression of myocilin renders trabecular meshwork cells in a de-adhesive and vulnerable state. This vulnerability may be the basis for pathologic consequences in subtypes of glaucoma.  相似文献   

9.
Myocilin is a broadly expressed protein that when mutated uniquely causes glaucoma. While no function has been ascribed to explain focal disease, some properties of myocilin are known. Myocilin is a cytoplasmic protein that also localizes to vesicles specifically as part of a large membrane-associated complex with properties similar to the SNARE machinery that function in vesicle fusion. Its role in vesicle dynamics has not been detailed, however myocilin intersects with the endocytic compartment at the level of the multivesicular body. Since internalized GPCRs are sorted in the multivesicular body, we investigated whether myocilin functions in ligand-dependent GPR143 endocytosis. Using recombinant systems we found that the kinetics of myocilin recruitment to biotinylated membrane proteins was similar to that of arrestin-3. We also co-localized myocilin with GPR143 and Arrestin-2 by confocal microscopy. However, wild-type myocilin differed significantly in its association kinetics and co-localization with internalized proteins from mutant myocilin (P370L or T377M). Moreover, we found that myocilin bound to the cytoplasmic tail of GPR143, an interaction mediated by its amino terminal helix-turn-helix domain. Hydrodynamic analyses show that the myocilin-GPR143 protein complex is >158 kD and stable in 500 mM KCl, but not 0.1% SDS. Collectively, data indicate that myocilin is recruited to the membrane compartment, interacting with GPCR proteins during ligand-mediated endocytosis and that GPCR signaling underlies pathology in myocilin glaucoma.  相似文献   

10.
Myocilin, a matricellular protein, is mutated in glaucoma. Here we report the identification and characterization, by the yeast two-hybrid system, of a putative interacting protein with myocilin. One of the positive clones exhibited 100% identity with the carboxyl-terminal (C-t) region of hevin, a member of the BM-40/SPARC/osteonectin family of extracellular matrix proteins. Protein interaction was assayed, in doubly transfected 293-T cells, by Western blot and fluorescent microscopy. Western blot analysis of the culture medium and lysates from cotransfected cells indicated that myocilin causes intracellular accumulation of hevin-C-t and impairs its secretion. This effect on hevin-C-t was augmented when coexpressed with the myocilin P370L mutant, known to cause a severe form of glaucoma. By fluorescent microscopy, myocilin localizes with hevin-C-t in the Golgi in cotransfected 293-T cells and with hevin-wt in the ocular ciliary epithelium. Overall, these results suggested that the C-t of hevin contains important determinants for interaction with myocilin.  相似文献   

11.
The trabecular meshwork (TM), an ocular tissue next to the cornea, is a major site for regulation of the aqueous humor outflow. Malfunctioning of this tissue is believed to be responsible for development of glaucoma, a major blinding disease. Myocilin is a gene directly linked to the most common form of glaucoma. Its protein product has been localized to both intra- and extra-cellular sites in TM cells. This study was to investigate the association of myocilin with mitochondria in TM cells. In vitro mitochondrial import assays showed that myocilin was imported to the TM mitochondria, targeting to mitochondrial membranes and/or the intermembrane space. The targeting was mediated mostly via the amino-terminal region of myocilin. When myocilin expression was induced either by treatment with dexamethasone or transfection with a myocilin construct, the mitochondrial membrane potential in TM cells, as assessed by JC-1 staining, was lowered. Subcellular fractionation and Western blot analyses confirmed that a portion of myocilin sedimented with the mitochondrial fractions. Upon anti-Fas treatment to provoke apoptosis, an increase of myocilin distribution in cytosolic fraction was observed, suggesting that myocilin was partially released from mitochondrial compartments. These results confirmed the association of myocilin with TM cell mitochondria and indicated that myocilin may have a proapoptotic role in TM cells.  相似文献   

12.
The MYOCILIN gene encodes a secreted glycoprotein which is highly expressed in eye drainage structures. Mutations in this gene may lead to juvenile open-angle glaucoma and adult onset primary open-angle glaucoma, one of the leading causes of irreversible blindness in the world. Functions of wild-type myocilin are still unclear. We have recently demonstrated that myocilin is a modulator of Wnt signaling and may affect actin cytoskeleton organization. Here we report that myocilin and its naturally occurring proteolytic fragments, similar to Wnt3a, are able to stimulate trabecular meshwork, NIH3T3, and FHL124 cell migration with the N-terminal proteolytic fragment of myocilin lacking the olfactomedin domain producing the highest stimulatory effect. Stimulation of cell migration occurs through activation of the integrin-focal adhesion kinase (FAK)-serine/threonine kinase (AKT) signaling pathway. Inhibition of FAK by siRNA reduced the stimulatory action of myocilin by threefold. Activation of several components of this signaling pathway was also demonstrated in the eyes of transgenic mice expressing elevated levels of myocilin in the eye drainage structures. These data extend the similarities between actions of myocilin and Wnt proteins acting through a β-catenin-independent mechanism. The modification of the migratory ability of cells by myocilin may play a role in normal functioning of the eye anterior segment and its pathology including glaucoma.  相似文献   

13.
Summary Mutations in the gene encoding human myocilin are associated with some cases of juvenile and early-onset glaucoma. Glaucomatous mutations prevent myocilin from being secreted. The analysis of the defects associated with mutations point to the existence of factor(s) in addition to mutations that might be implicated in the development of glaucoma. In the present paper, we found that interaction of myocilin with one of the members of the synuclein family alters its properties, including its ability to be secreted. Results of immunoprecipitation show that myocilin is a γ-synuclein-interacting protein. Further analysis demonstrated that both myocilin and γ-synuclein are expressed in human TM cells, immortalized rat ganglion (RGC-5) cells, and HT22 hippocampal neurons. According to Western blotting, in addition to monomeric form with molecular weight 17 kDa γ-synuclein is present as higher molecular weight forms (∼35 and 68 KDa), presumably dimer and tetramer. Myocilin and γ-synuclein have partially overlapping perinuclear localization. Dexamethasone upregulates myocilin expression in RGC-5 cells and HT22 hippocampal neurons. We found alterations of myocilin properties as a result of its interaction with γ-synuclein. In cultured cells, γ-synuclein upregulates myocilin expression, inhibits its secretion and prevents the formation of high molecular weight forms of myocilin. Although both α-synuclein and γ-synuclein are expressed in HTM cells, only γ-synuclein interacts with myocilin and alters its properties. We conclude that myocilin and γ-synuclein interact and as a result, myocilin's properties are changed. Since myocilin and γ-synuclein have partially overlapping intracellular localization in cell types that are implicated in glaucoma development, their interaction may play an important role in glaucoma.  相似文献   

14.

Background  

Mutations in the gene encoding human myocilin (MYOC ) have been shown to cause juvenile- and adult-onset glaucoma. In addition, myocilin has been associated with glucocorticoid-induced ocular hypertension and steroid-induced glaucoma. To better understand the role myocilin plays in steroid-induced glaucoma and open-angle glaucoma, we examined rabbit myocilin for use in the rabbit animal model of steroid-induced glaucoma.  相似文献   

15.
Primary open-angle glaucoma (POAG) is a leading cause of blindness in the world. A number of mutations in the myocilin gene have been identified that predispose to glaucoma. The most frequent of these is the Glutamine368STOP (Q368STOP) mutation. It has been postulated that individuals with the Q368STOP mutation are derived from a common founder. To clarify this situation, we studied 15 unrelated POAG families who carried the Q368STOP mutation, from south eastern Australia. In one large family, nine affected and ten unaffected individuals were identified with the Q368STOP mutation. Closely linked polymorphic microsatellite markers were used to establish a disease haplotype in this family. Additional genotyping of markers in another 14 unrelated Q368STOP families revealed the presence of the same disease haplotype. These findings indicate that the Q368STOP mutation in all 15 families shared a common origin prior to the European settlement of Australia in the early 1800s.  相似文献   

16.

Introduction

Increased activity of osteoclasts is responsible for bone loss and joint destruction in rheumatoid arthritis. For osteoclast development and bone resorption activity, cytoskeletal organization must be properly regulated. MicroRNAs (miRNAs) are endogenous small noncoding RNAs that suppress expression of their target genes. This study was conducted to identify crucial miRNAs to control osteoclasts.

Methods

miRNA expression in the bone marrow-derived macrophages (BMM) with or without receptor activator of nuclear factor κB ligand (RANKL) stimulation was analyzed by miRNA array. To examine the role of specific miRNAs in osteoclast formation, bone resorption activity and actin ring formation, the BMM were retrovirally transduced with miRNA antagomirs. To confirm whether the suppressive effects on osteoclastogenesis by miR-31 inhibition were mediated by targeting RhoA, osteoclast formation was analyzed in the presence of the RhoA inhibitor, exoenzyme C3.

Results

miR-31 was identified as one of the highly upregulated miRNAs during osteoclast development under RANKL stimulation. Inhibition of miR-31 by specific antagomirs suppressed the RANKL-induced formation of osteoclasts and bone resorption. Phalloidin staining of osteoclasts revealed that actin ring formation at the cell periphery was severely impaired by miR-31 inhibition, and clusters of small ringed podosomes were observed instead. In these osteoclasts, expression of RhoA, one of the miR-31 target genes, was upregulated by miR-31 inhibition in spite of the impaired osteoclastogenesis. Treatment with the RhoA inhibitor, exoenzyme C3, rescued the osteoclastogenesis impaired by miR-31 inhibition.

Conclusions

miR-31 controls cytoskeleton organization in osteoclasts for optimal bone resorption activity by regulating the expression of RhoA.  相似文献   

17.

Background

Sonic hedgehog (Shh) signaling in the mouse requires the microtubule-based organelle, the primary cilium. The primary cilium is assembled and maintained through the process of intraflagellar transport (IFT) and the response to Shh is blocked in mouse mutants that lack proteins required for IFT. Although the phenotypes of mouse IFT mutants do not overlap with phenotypes of known Wnt pathway mutants, recent studies report data suggesting that the primary cilium modulates responses to Wnt signals.

Methodology/Principal Findings

We therefore carried out a systematic analysis of canonical Wnt signaling in mutant embryos and cells that lack primary cilia because of loss of the anterograde IFT kinesin-II motor (Kif3a) or IFT complex B proteins (Ift172 or Ift88). We also analyzed mutant embryos with abnormal primary cilia due to defects in retrograde IFT (Dync2h1). The mouse IFT mutants express the canonical Wnt target Axin2 and activate a transgenic canonical Wnt reporter, BAT-gal, in the normal spatial pattern and to the same quantitative level as wild type littermates. Similarly, mouse embryonic fibroblasts (MEFs) derived from IFT mutants respond normally to added Wnt3a. The switch from canonical to non-canonical Wnt also appears normal in IFT mutant MEFs, as both wild-type and mutant cells do not activate the canonical Wnt reporter in the presence of both Wnt3a and Wnt5a.

Conclusions

We conclude that loss of primary cilia or defects in retrograde IFT do not affect the response of the midgestation embryo or embryo-derived fibroblasts to Wnt ligands.  相似文献   

18.
Myocilin is a protein found in the extracellular matrix of trabecular meshwork tissue, the anatomical region of the eye involved in regulating intraocular pressure. Wild-type (WT) myocilin has been associated with steroid-induced glaucoma, and variants of myocilin have been linked to early-onset inherited glaucoma. Elevated levels and aggregation of myocilin hasten increased intraocular pressure and glaucoma-characteristic vision loss due to irreversible damage to the optic nerve. In spite of reports on the intracellular accumulation of mutant and WT myocilin in vitro, cell culture, and model organisms, these aggregates have not been structurally characterized. In this work, we provide biophysical evidence for the hallmarks of amyloid fibrils in aggregated forms of WT and mutant myocilin localized to the C-terminal olfactomedin (OLF) domain. These fibrils are grown under a variety of conditions in a nucleation-dependent and self-propagating manner. Protofibrillar oligomers and mature amyloid fibrils are observed in vitro. Full-length mutant myocilin expressed in mammalian cells forms intracellular amyloid-containing aggregates as well. Taken together, this work provides new insights into and raises new questions about the molecular properties of the highly conserved OLF domain, and suggests a novel protein-based hypothesis for glaucoma pathogenesis for further testing in a clinical setting.  相似文献   

19.
Myocilin (MYOC, TIGR) variations are associated with juvenile and primary open angle glaucoma (POAG). To investigate consequences of MYOC wildtype overexpression and selected mutations, we established a heterologous insect cell system (High Five). Wildtype, Pro370Leu, Gln368X and Lys423Glu were cloned into a modified pIB/V5-His (pEXIV) vector with and without downstream GFP in frame fusion. Mutations were introduced by in vitro mutagenesis. Heterologous expression was shown and analysed by RT-PCR, Western blotting, immunocytochemistry and fluorescence microscopy. Extended cultivation (>14 days) resulted in accumulation of MYOC protein for all variants in growing dilated cisterns of the rough endoplasmic reticulum. Finally cell death for overexpressed wildtype and mutants occurs. A direct attachment of ribosomes to these growing vesicles preceding the cell death was observed by electron microscopy. Our observations indicate that this system is suitable to trace the intracellular effects of MYOC mutants.  相似文献   

20.
MYOC encoding a 55kDa secretory glycoprotein named myocilin is closely linked to primary open-angle glaucoma (POAG). To understand a role played by MYOC in glaucoma, we examined the cellular fate of various mutant myocilins that were adenovirally expressed in human trabecular meshwork cells. Most myocilins with mutations such as G364V, Q368X, K423E, Y437H, and I477N were intrinsically stable, and appeared to have interactions with wild-type myocilin but not with stromelysin and thereby selectively inhibited the secretion of the former protein. The myocilins expressed were identified to be concentrated into fine punctate aggregates in endoplasmic reticulum, but never developed into the formation of aggresomes. In endoplasmic reticulum, the accumulation of the myocilins resulted in the upregulation of 78kDa glucose-regulated protein and protein disulfide isomerase. In addition, the expression of the myocilins led to deformed cellular morphology and diminished cell proliferation, an effect postulated to result in the dysfunction of trabecular cells that could be a cause of glaucoma. Therefore, our results support the statement that gain of function rather than haploinsufficiency is a critical mechanism for POAG in individuals with mutations on MYOC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号