首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The pathogenesis of splenic marginal zone lymphoma (SMZL) remains largely unknown. Recent high-throughput sequencing studies have identified recurrent mutations in key pathways, most notably NOTCH2 mutations in >25% of patients. These studies are based on small, heterogeneous discovery cohorts, and therefore only captured a fraction of the lesions present in the SMZL genome. To identify further novel pathogenic mutations within related biochemical pathways, we applied whole exome sequencing (WES) and copy number (CN) analysis to a biologically and clinically homogeneous cohort of seven SMZL patients with 7q abnormalities and IGHV1-2*04 gene usage. We identified 173 somatic non-silent variants, affecting 160 distinct genes. In additional to providing independent validation of the presence of mutation in several previously reported genes (NOTCH2, TNFAIP3, MAP3K14, MLL2 and SPEN), our study defined eight additional recurrently mutated genes in SMZL; these genes are CREBBP, CBFA2T3, AMOTL1, FAT4, FBXO11, PLA2G4D, TRRAP and USH2A. By integrating our WES and CN data we identified three mutated putative candidate genes targeted by 7q deletions (CUL1, EZH2 and FLNC), with FLNC positioned within the well-characterized 7q minimally deleted region. Taken together, this work expands the reported directory of recurrently mutated cancer genes in this disease, thereby expanding our understanding of SMZL pathogenesis. Ultimately, this work will help to establish a stratified approach to care including the possibility of targeted therapy.  相似文献   

3.
Splenic marginal zone lymphomas (SMZL) are an uncommon type of B-cell non-Hodgkin's lymphoma (NHL-B) in which no specific chromosomal translocations have been described. In contrast, the most frequent cytogenetic abnormality is the loss of the long arm of chromosome 7 (7q). Previous reports have located this loss in the 7q32 region. In order to better characterize the genomic imbalances in SMZL, molecular studies were carried out in 73 patients with SMZL. To gain insight into the mapping at 7q a tiling array was also used. The results confirmed the loss of 7q as the most frequent change. In addition, several abnormalities, including 4q22.1, 1q21.3-q22, 6q25.3, 20q13.33, 3q28, 2q23.3-q24.1 and 17p13, were also present. A loss of 7q22.1 at 99925039-101348479 bp was observed in half of the cases. The region of 7q22.1 has not previously been characterised in SMZL. Our results confirmed the presence of a new region of loss on chromosome 7 in these NHL.  相似文献   

4.
《Gene》2014,542(2):263-265
We present the case of two brothers who were referred to a male infertility clinic for infertility workup. Conventional chromosome analysis and Y chromosome microdeletions did not reveal any genetic alterations. We utilized the chromosome microarray analysis (CMA) to identify novel and common variations associated with this severely impaired spermatogenesis cases. CMA specific results showed a common deletion in the 15q15.3 region that harbors genes like CATSPER2, STRC and PPIP5K1 in both cases (M18 and M19). In addition we identified small duplication in X and 11 chromosomes of M19. This is the first familial case report from India on occurrence of CATSPER gene deletion in human male infertility.  相似文献   

5.
Deletion of the 1.5–3 Mb region of chromosome 22 at locus 11.2 gives rise to the chromosome 22q11.2 deletion syndrome (22q11DS), also known as DiGeorge and Velocardiofacial Syndromes. It is the most common micro-deletion disorder in humans and one of the most common multiple malformation syndromes. The syndrome is characterized by a broad phenotype, whose characterization has expanded considerably within the last decade and includes many associated findings such as craniofacial anomalies (40%), conotruncal defects of the heart (CHD; 70–80%), hypocalcemia (20–60%), and a range of neurocognitive anomalies with high risk of schizophrenia, all with a broad phenotypic variability. These phenotypic features are believed to be the result of a change in the copy number or dosage of the genes located in the deleted region. Despite this relatively clear genetic etiology, very little is known about which genes modulate phenotypic variations in humans or if they are due to combinatorial effects of reduced dosage of multiple genes acting in concert. Here, we report on decreased expression levels of genes within the deletion region of chromosome 22, including DGCR8, in peripheral leukocytes derived from individuals with 22q11DS compared to healthy controls. Furthermore, we found dysregulated miRNA expression in individuals with 22q11DS, including miR-150, miR-194 and miR-185. We postulate this to be related to DGCR8 haploinsufficiency as DGCR8 regulates miRNA biogenesis. Importantly we demonstrate that the level of some miRNAs correlates with brain measures, CHD and thyroid abnormalities, suggesting that the dysregulated miRNAs may contribute to these phenotypes and/or represent relevant blood biomarkers of the disease in individuals with 22q11DS.  相似文献   

6.
We report on a patient with a contiguous interstitial germline deletion of chromosome 10q23, encompassing BMPR1A and PTEN, with clinical manifestations of juvenile polyposis and minor symptoms of Cowden syndrome (CS) and Bannayan–Riley–Ruvalcaba syndrome (BRRS). The patient presented dysmorphic features as well as developmental delay at the age of 5 months. Multiple polyps along all parts of the colon were diagnosed at the age of 3 years, following an episode of a severe abdominal pain and intestinal bleeding. The high-resolution comparative genomic hybridisation revealed a 3.7-Mb deletion within the 10q23 chromosomal region: 86,329,859–90,035,024. The genotyping with four polymorphic microsatellite markers confirmed a de novo 10q deletion on the allele with a paternal origin, encompassing both PTEN and BMPR1A genes. The karyotype analysis additionally identified a balanced translocation involving chromosomes 5q and 7q, and an inversion at chromosome 2, i.e. 46,XY,t(5;7)(q13.3-q36), inv(2)(p25q34). Although many genetic defects were detected, it is most likely that the 10q23 deletion is primarily the cause for the serious phenotypic manifestations. The current clinical findings and deletion of BMPR1A indicate a diagnosis of severe juvenile polyposis, but the existing macrocephaly and PTEN deletion also point to either CS or BRRS, which cannot be ruled out at the moment because of their clinical manifestation later in life and the de novo character of the deletion. The deletion detected in our patient narrows the genetic region deleted in all reported cases with juvenile polyposis by 0.04 Mb from the telomeric side, mapping it to the region chr10:88.5–90.03Mb (GRCh37/hg19), with an overall length of 1.53 Mb.  相似文献   

7.
Recurrent deletions of 2q32q33 have recently been reported as a new microdeletion syndrome. Clinical features of this syndrome include severe mental retardation, growth retardation, dysmorphic features, thin and sparse hair, feeding difficulties and cleft or high palate. The commonly deleted region contains at least seven genes. Haploinsufficiency of one of these genes, SATB2, a DNA-binding protein that regulates gene expression, has been implicated as causative in the cleft or high palate of individuals with 2q32q33 microdeletion syndrome. In this study we describe three individuals with smaller microdeletions of this region, within 2q33.1. The deletions ranged in size from 173.1 kb to 185.2 kb and spanned part of SATB2. Review of clinical records showed similar clinical features among these individuals, including severe developmental delay and tooth abnormalities. Two of the individuals had behavioral problems. Only one of the subjects presented here had a cleft palate, suggesting reduced penetrance for this feature. Our results suggest that deletion of SATB2 is responsible for several of the clinical features associated with 2q32q33 microdeletion syndrome.  相似文献   

8.
13q deletion syndrome is a rare genetic disorder, especially for group 3 deletion (13q33–q34 deletion). Previously we described a patient with congenital heart defect and mental retardation and proposed that a distal 6 Mb region might contain the causative gene of congenital heart defect. Here we present a new patient with congenital heart defects (CHD), hand and foot anomalies and mild mental retardation. We identified a 1.1 Mb deletion at chromosome 13q34 with high resolution SNP-array BeadChips (HumanOmni1-Quad, Illumina, USA). This chromosome region contains ten annotated genes, including GRK1, TFDP1, RASA3 and GAS6. To our knowledge, this represents the smallest 13q34 deletion identified to date. Our study provides additional support that distal 13q34 deletion region might contain key gene(s) responsible for cardiac development.  相似文献   

9.
10.
Neurodevelopmental disorders (NDDs) are caused by mutations in diverse genes involved in different cellular functions, although there can be crosstalk, or convergence, between molecular pathways affected by different NDDs. To assess molecular convergence, we generated human neural progenitor cell models of 9q34 deletion syndrome, caused by haploinsufficiency of EHMT1, and 18q21 deletion syndrome, caused by haploinsufficiency of TCF4. Using next-generation RNA sequencing, methylation sequencing, chromatin immunoprecipitation sequencing, and whole-genome miRNA analysis, we identified several levels of convergence. We found mRNA and miRNA expression patterns that were more characteristic of differentiating cells than of proliferating cells, and we identified CpG clusters that had similar methylation states in both models of reduced gene dosage. There was significant overlap of gene targets of TCF4 and EHMT1, whereby 8.3% of TCF4 gene targets and 4.2% of EHMT1 gene targets were identical. These data suggest that 18q21 and 9q34 deletion syndromes show significant molecular convergence but distinct expression and methylation profiles. Common intersection points might highlight the most salient features of disease and provide avenues for similar treatments for NDDs caused by different genetic mutations.  相似文献   

11.

Background

Patients with chronic lymphocytic leukemia and 13q deletion as their only FISH abnormality could have a different outcome depending on the number of cells displaying this aberration. Thus, cases with a high number of 13q- cells (13q-H) had both shorter overall survival and time to first therapy. The goal of the study was to analyze the genetic profile of 13q-H patients.

Design and Methods:

A total of 102 samples were studied, 32 of which served as a validation cohort and five were healthy donors.

Results

Chronic lymphocytic leukemia patients with higher percentages of 13q- cells (>80%) showed a different level of gene expression as compared to patients with lower percentages (<80%, 13q-L). This deregulation affected genes involved in apoptosis and proliferation (BCR and NFkB signaling), leading to increased proliferation and decreased apoptosis in 13q-H patients. Deregulation of several microRNAs, such as miR-15a, miR-155, miR-29a and miR-223, was also observed in these patients. In addition, our study also suggests that the gene expression pattern of 13q-H cases could be similar to the patients with 11q- or 17p-.

Conclusions

This study provides new evidence regarding the heterogeneity of 13q deletion in chronic lymphocytic leukemia patients, showing that apoptosis, proliferation as well as miRNA regulation are involved in cases with higher percentages of 13q- cells.  相似文献   

12.
13.
Creative activities in music represent a complex cognitive function of the human brain, whose biological basis is largely unknown. In order to elucidate the biological background of creative activities in music we performed genome-wide linkage and linkage disequilibrium (LD) scans in musically experienced individuals characterised for self-reported composing, arranging and non-music related creativity. The participants consisted of 474 individuals from 79 families, and 103 sporadic individuals. We found promising evidence for linkage at 16p12.1-q12.1 for arranging (LOD 2.75, 120 cases), 4q22.1 for composing (LOD 2.15, 103 cases) and Xp11.23 for non-music related creativity (LOD 2.50, 259 cases). Surprisingly, statistically significant evidence for linkage was found for the opposite phenotype of creative activity in music (neither composing nor arranging; NCNA) at 18q21 (LOD 3.09, 149 cases), which contains cadherin genes like CDH7 and CDH19. The locus at 4q22.1 overlaps the previously identified region of musical aptitude, music perception and performance giving further support for this region as a candidate region for broad range of music-related traits. The other regions at 18q21 and 16p12.1-q12.1 are also adjacent to the previously identified loci with musical aptitude. Pathway analysis of the genes suggestively associated with composing suggested an overrepresentation of the cerebellar long-term depression pathway (LTD), which is a cellular model for synaptic plasticity. The LTD also includes cadherins and AMPA receptors, whose component GSG1L was linked to arranging. These results suggest that molecular pathways linked to memory and learning via LTD affect music-related creative behaviour. Musical creativity is a complex phenotype where a common background with musicality and intelligence has been proposed. Here, we implicate genetic regions affecting music-related creative behaviour, which also include genes with neuropsychiatric associations. We also propose a common genetic background for music-related creative behaviour and musical abilities at chromosome 4.  相似文献   

14.
The combined deletion of 1p and 19q chromosomal arms is frequent in oligodendrogliomas (OD) and has recently been shown to be mediated by an unbalanced t(1;19) translocation. Recent studies of 1p/19q co-deleted OD suggest that the NOTCH2 gene is implicated in oligodendrocyte differentiation and may be involved in this rearrangement. The objective of the present study was to analyze the NOTCH2 locus either as a chromosomal translocation locus that may be altered by the 1p/19q recurrent rearrangement or as a gene that may be inactivated by a two hit process. We performed an array-CGH analysis of 15 ODs presenting 1p/19q co-deletion using a high-density oligonucleotide microarray spanning 1p and 19q pericentromeric regions with 377 bp average probe spacing. We showed that the 1p deletion extends to the centromere of chromosome 1 and includes the entire NOTCH2 gene. No internal rearrangement of this gene was observed. This strongly suggests that the t(1;19) translocation does not lead to an abnormal NOTCH2 structure. The analysis of the entire NOTCH2 coding sequence was performed in four cases and did not reveal any mutation therefore indicating that NOTCH2 does not harbor genetic characteristics of a tumor suppressor gene. Finally, the detailed analysis of chromosome 19 pericentromeric region led to the identification of two breakpoint clusters at 19p12 and 19q11–12. Interestingly, these two regions share a large stretch of homology. Together with previous observations of similarities between chromosome 1 and 19 alphoid sequences, this suggests that the t(1;19) translocation arises from complex intra and interchromosomal rearrangements.This is the first comprehensive deletion mapping by high density oligo-array of the 1p/19q co-deletion in oligodendroglioma tumors using a methodological approach superior to others previously applied. As such this paper provides clear evidence that the NOTCH2 gene is not physically rearranged by t(1;19) translocation of oligodendroglioma tumors.  相似文献   

15.
We developed a simple, direct and cost-effective approach to search for the most likely target genes of a known microRNA (miRNA) in vitro. We term this method ‘labeled miRNA pull-down (LAMP)’ assay system. Briefly, the pre-miRNA is labeled with digoxigenin (DIG), mixed with cell extracts and immunoprecipitated by anti-DIG antiserum. When the DIG-labeled miRNA and bound mRNA complex are obtained, the total cDNAs are then subcloned and sequenced, or RT–PCR-amplified, to search for the putative target genes of a known miRNA. After successfully identifying the known target genes of Caenorhabditis elegans miRNAs lin-4 and let-7 and zebrafish let-7, we applied LAMP to find the unknown target gene of zebrafish miR-1, which resulted in the identification of hand2. We then confirmed hand2 as a novel target gene of miR-1 by whole-mount in situ hybridization and luciferase reporter gene assay. We further validated this target gene by microarray analysis, and the results showed that hand2 is the top-scoring among 302 predicted putative target genes. We concluded that LAMP is an experimental approach for high-throughput identification of the target gene of known miRNAs from both C. elegans and zebrafish, yielding fewer false positive results than those produced by using only the bioinformatics approach.  相似文献   

16.
17.

Background

Osteosarcomas are the most common non-haematological primary malignant tumours of bone, and all conventional osteosarcomas are high-grade tumours showing complex genomic aberrations. We have integrated genome-wide genetic and epigenetic profiles from the EuroBoNeT panel of 19 human osteosarcoma cell lines based on microarray technologies.

Principal Findings

The cell lines showed complex patterns of DNA copy number changes, where genomic copy number gains were significantly associated with gene-rich regions and losses with gene-poor regions. By integrating the datasets, 350 genes were identified as having two types of aberrations (gain/over-expression, hypo-methylation/over-expression, loss/under-expression or hyper-methylation/under-expression) using a recurrence threshold of 6/19 (>30%) cell lines. The genes showed in general alterations in either DNA copy number or DNA methylation, both within individual samples and across the sample panel. These 350 genes are involved in embryonic skeletal system development and morphogenesis, as well as remodelling of extracellular matrix. The aberrations of three selected genes, CXCL5, DLX5 and RUNX2, were validated in five cell lines and five tumour samples using PCR techniques. Several genes were hyper-methylated and under-expressed compared to normal osteoblasts, and expression could be reactivated by demethylation using 5-Aza-2′-deoxycytidine treatment for four genes tested; AKAP12, CXCL5, EFEMP1 and IL11RA. Globally, there was as expected a significant positive association between gain and over-expression, loss and under-expression as well as hyper-methylation and under-expression, but gain was also associated with hyper-methylation and under-expression, suggesting that hyper-methylation may oppose the effects of increased copy number for detrimental genes.

Conclusions

Integrative analysis of genome-wide genetic and epigenetic alterations identified dependencies and relationships between DNA copy number, DNA methylation and mRNA expression in osteosarcomas, contributing to better understanding of osteosarcoma biology.  相似文献   

18.
We examined miRNA expression from RNA isolated from the frontal cortex (Broadman area 9) of 9 alcoholics (6 males, 3 females, mean age 48 years) and 9 matched controls using both the Affymetrix GeneChip miRNA 2.0 and Human Exon 1.0 ST Arrays to further characterize genetic influences in alcoholism and the effects of alcohol consumption on predicted target mRNA expression. A total of 12 human miRNAs were significantly up-regulated in alcohol dependent subjects (fold change ≥ 1.5, false discovery rate (FDR) ≤ 0.3; p < 0.05) compared with controls including a cluster of 4 miRNAs (e.g., miR-377, miR-379) from the maternally expressed 14q32 chromosome region. The status of the up-regulated miRNAs was supported using the high-throughput method of exon microarrays showing decreased predicted mRNA gene target expression as anticipated from the same RNA aliquot. Predicted mRNA targets were involved in cellular adhesion (e.g., THBS2), tissue differentiation (e.g., CHN2), neuronal migration (e.g., NDE1), myelination (e.g., UGT8, CNP) and oligodendrocyte proliferation (e.g., ENPP2, SEMA4D1). Our data support an association of alcoholism with up-regulation of a cluster of miRNAs located in the genomic imprinted domain on chromosome 14q32 with their predicted gene targets involved with oligodendrocyte growth, differentiation and signaling.  相似文献   

19.
20.
Congenital diaphragmatic hernia (CDH) has an incidence of 1 in 3,000 births and a high mortality rate (33%-58%). Multifactorial inheritance, teratogenic agents, and genetic abnormalities have all been suggested as possible etiologic factors. To define candidate regions for CDH, we analyzed cytogenetic data collected on 200 CDH cases, of which 7% and 5% showed numerical and structural abnormalities, respectively. This study focused on the most frequent structural anomaly found: a deletion on chromosome 15q. We analyzed material from three of our patients and from four previously published patients with CDH and a 15q deletion. By using array-based comparative genomic hybridization and fluorescent in situ hybridization to determine the boundaries of the deletions and by including data from two individuals with terminal 15q deletions but without CDH, we were able to exclude a substantial portion of the telomeric region from the genetic etiology of this disorder. Moreover, one patient with CDH harbored a small interstitial deletion. Together, these findings allowed us to define a minimal deletion region of approximately 5 Mb at chromosome 15q26.1-26.2. The region contains four known genes, of which two--NR2F2 and CHD2--are particularly intriguing gene candidates for CDH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号