首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eisosomes are multiprotein structures that generate linear invaginations at the plasma membrane of yeast cells. The core component of eisosomes, the BAR domain protein Pil1, generates these invaginations through direct binding to lipids including phosphoinositides. Eisosomes promote hydrolysis of phosphatidylinositol 4,5 bisphosphate (PI(4,5)P2) by functioning with synaptojanin, but the cellular processes regulated by this pathway have been unknown. Here, we found that PI(4,5)P2 regulation by eisosomes inhibits the cell integrity pathway, a conserved MAPK signal transduction cascade. This pathway is activated by multiple environmental conditions including osmotic stress in the fission yeast Schizosaccharomyces pombe. Activation of the MAPK Pmk1 was impaired by mutations in the phosphatidylinositol (PI) 5-kinase Its3, but this defect was suppressed by removal of eisosomes. Using fluorescent biosensors, we found that osmotic stress induced the formation of PI(4,5)P2 clusters that were spatially organized by eisosomes in both fission yeast and budding yeast cells. These cortical clusters contained the PI 5-kinase Its3 and did not assemble in the its3-1 mutant. The GTPase Rho2, an upstream activator of Pmk1, also co-localized with PI(4,5)P2 clusters under osmotic stress, providing a molecular link between these novel clusters and MAPK activation. Our findings have revealed that eisosomes regulate activation of MAPK signal transduction through the organization of cortical lipid-based microdomains.  相似文献   

2.
Rotenone is a widely used pesticide that induces Parkinson’s disease-like symptoms in rats and death of dopaminergic neurons in culture. Although rotenone is a potent inhibitor of complex I of the mitochondrial electron transport chain, it can induce death of dopaminergic neurons independently of complex I inhibition. Here we describe effects of rotenone in the fission yeast, Schizosaccharomyces pombe, which lacks complex I and carries out rotenone-insensitive cellular respiration. We show that rotenone induces generation of reactive oxygen species (ROS) as well as fragmentation of mitochondrial networks in treated S. pombe cells. While rotenone is only modestly inhibitory to growth of wild type S. pombe cells, it is strongly inhibitory to growth of mutants lacking the ERK-type MAP kinase, Pmk1, or protein kinase A (PKA). In contrast, cells lacking the p38 MAP kinase, Spc1, exhibit modest resistance to rotenone. Consistent with these findings, we provide evidence that Pmk1 and PKA, but not Spc1, are required for clearance of ROS in rotenone treated S. pombe cells. Our results demonstrate the usefulness of S. pombe for elucidating complex I-independent molecular targets of rotenone as well as mechanisms conferring resistance to the toxin.  相似文献   

3.
A series of novel β-pinene-based thiazole derivatives were synthesized and characterized by HRMS, 1H NMR, and 13C NMR analyses as potential antineoplastic agents. Derivatives were evaluated for their anticancer activities in vitro, and the data manifested that most target compounds showed potent anti-proliferative activities against three human cancer cell lines. Especially, compound 5g displayed excellent cytotoxic activity against Hela, CT-26, and SMMC-7721 cell lines with IC50 values of 3.48 ± 0.14, 8.84 ± 0.16, and 6.69 ± 0.15 µM, respectively. To determine the underlying mechanism of compound 5g on cell viability, DAPI staining, Annexin-V/PI staining, JC-1 staining, DCFDA staining, and Western blot analysis were performed. Our data showed that compound 5g inhibited cell proliferation by inducing apoptosis and cell cycle arrest of Hela cells at the G0/G1 phase in a dose dependent manner. Further studies revealed that compound 5g enhanced levels of reactive oxygen species (ROS), caused a decrease in mitochondrial membrane potential, increased the release of mitochondrial cytochrome C, and affected the expression of Bax, Bcl-2, caspase-3 and caspase-9. Thus, our findings indicated that compound 5g induced apoptosis in Hela through ROS-mediated mitochondrial dysfunction signaling pathways.  相似文献   

4.
Guard cells generate reactive oxygen species (ROS) in response to abscisic acid (ABA), which leads to stomatal closing. The upstream steps of the ABA-induced ROS generation pathway remain largely unknown. In animal cells, ROS generation in neutrophils is activated by phosphatidylinositol 3-phosphate (PI3P). Stomatal guard cells contain PI3P and PI 3-kinase activity. In this study, we tested whether PI3P has a role in ROS generation in guard cells exposed to ABA. We found that PI 3-kinase inhibitors wortmannin or LY294002 inhibited ABA-induced ROS generation and stomatal closing. Endosome-binding domain (of human EEA1), which specifically binds to PI3P, also inhibited ABA-induced ROS generation and stomatal closing when overexpressed in guard cells. Hydrogen peroxide partially reversed the effects of wortmannin or LY294002 on ABA-induced stomatal closing. These results support a role for PI3P in ABA-induced ROS generation and stomatal closing movement.  相似文献   

5.
BackgroundThe dried fruits of Brucea javanica (L.) Merr (BJ) is being widely investigated, both in lab and in clinic, to explore its potential anticancer activity and molecular mechanism involved.PurposeWe appraised the available literature and suggested the future research directions to improve the medicinal value of BJ.MethodIn this review, we have summarized the scientific findings from experimental and clinical studies regarding the anticancer activity and mechanisms.ResultsNumerous studies have reported that BJ exerts anticancer effect on various types of cancer lines through inhibiting cell proliferation, inducing apoptosis, inhibiting migration/invasion, inducing autophagy and restraining angiogenesis. Brucea javanica triggers the generation of reactive oxygen species (ROS), release of cytochrome C, activation of mitochondrial apoptosis pathway and regulation of a series of signal pathways and proteins related to cancer. The molecular mechanism involved are inhibiting the PI3K/Akt/mTOR, NF-κB and Nrf2-Notch1 pathways; up or down modulating the levels of p53, p62, p21, Bax, and Bcl-2 respectively, and inhibiting the expression of matrix metalloproteinases (MMPs), vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). Brucea javanica’s efficacy in treating cancer patients either as a main or supportive treatment is also discussed in this review.ConclusionThis review will serve as a comprehensive resource of BJ's potential as anticancer agent and its molecular pathways. The analysis of the literature suggests that BJ can serve as a potential candidate for the treatment of cancer.  相似文献   

6.
7.
Celastrol has been reported to possess anticancer effects in various cancers; however, the precise mechanism underlying ROS-mediated mitochondria-dependent apoptotic cell death triggered by celastrol treatment in melanoma cells remains unknown. We showed that celastrol effectively induced apoptotic cell death and inhibited tumor growth using tissue culture and in vivo models of B16 melanoma. In addition to apoptotic cell death in B16 cells, several apoptotic events such as PARP cleavage and activation of caspase were confirmed. Pretreatment with caspase inhibitor modestly attenuated the celastrol-induced increase in PARP cleavage and sub-G1 cell population, implying that caspases play a partial role in celastrol-induced apoptosis. Moreover, ROS generation was detected following celastrol treatment. Blocking of ROS accumulation with ROS scavengers resulted in inhibition of celastrol-induced Bcl-2 family-mediated apoptosis, indicating that celastrol-induced apoptosis involves ROS generation as well as an increase in the Bax/Bcl-2 ratio leading to release of cytochrome c and AIF. Importantly, silencing of AIF by transfection of siAIF into cells remarkably attenuated celastrol-induced apoptotic cell death. Moreover, celastrol inhibited the activation of PI3K/AKT/mTOR signaling cascade in B16 cells. Our data reveal that celastrol inhibits growth and induces apoptosis in melanoma cells via the activation of ROS-mediated caspase-dependent and -independent pathways and the suppression of PI3K/AKT signaling.  相似文献   

8.
The fission yeast Schizosaccharomyces pombe is a model organism used widely to study various aspects of eukaryotic biology. A collection of heterozygous diploid strains containing individual deletions in nearly all S. pombe genes has been created using a PCR based strategy. However, deletion of some genes has not been possible using this methodology. Here we use an efficient knockout strategy based on plasmids that contain large regions homologous to the target gene to delete an additional 29 genes. The collection of deletion mutants now covers 99% of the fission yeast open reading frames.  相似文献   

9.
Eurycoma longifolia Jack has been widely used in traditional medicine for its antimalarial, aphrodisiac, anti-diabetic, antimicrobial and anti-pyretic activities. Its anticancer activity has also been recently reported on different solid tumors, however no anti-leukemic activity of this plant has been reported. Thus the present study assesses the in vitro and in vivo anti-proliferative and apoptotic potentials of E. longifolia on K-562 leukemic cell line. The K-562 cells (purchased from ATCC) were isolated from patients with chronic myelocytic leukemia (CML) were treated with the various fractions (TAF273, F3 and F4) of E. longifolia root methanolic extract at various concentrations and time intervals and the anti-proliferative activity assessed by MTS assay. Flow cytometry was used to assess the apoptosis and cell cycle arrest. Nude mice injected subcutaneously with 107 K-562 cells were used to study the anti-leukemic activity of TAF273 in vivo. TAF273, F3 and F4 showed various degrees of growth inhibition with IC50 values of 19, 55 and 62 µg/ml, respectively. TAF273 induced apoptosis in a dose and time dependent manner. TAF273 arrested cell cycle at G1and S phases. Intraperitoneal administration of TAF273 (50 mg/kg) resulted in a significant growth inhibition of subcutaneous tumor in TAF273-treated mice compared with the control mice (P = 0.024). TAF273 shows potent anti-proliferative activity in vitro and in vivo models of CML and therefore, justifies further efforts to define more clearly the potential benefits of using TAF273 as a novel therapeutic strategy for CML management.  相似文献   

10.
11.
Feng  Huiqiong  Xi  Fuqiang 《Neurochemical research》2022,47(10):3137-3149

Miltirone is a phenanthrene-quinone derived from Salvia miltiorrhiza Bunge with anti-inflammatory and anti-oxidant effects. Our study aimed to explore the protective effect of miltirone on 1-methyl-4-phenylpyridinium (MPP+)-induced cell model of Parkinson’s disease (PD). PharmMapper database was employed to predict the targets of miltirone. PD-related genes were identified using GeneCards database. The overlapping genes between miltirone and PD were screened out using Venn diagram. KEGG analysis was performed using DAVID and KOBAS databases. Cell viability, reactive oxygen species (ROS) generation, apoptosis, and caspase-3 activity were detected by CCK-8 assay, a ROS assay kit, TUNEL, and caspase-3 activity assay, respectively. Effect of miltirone on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway was explored by western blot analysis. A total of 214 targets of miltirone and 372 targets related to PD were attained, including 29 overlapping targets. KEGG analysis demonstrated that the 29 overlapping targets were both significantly enriched in the PI3K/Akt pathway. MPP+ stimulation reduced the cell viability in SH-SY5Y cells and neuronal primary cultures derived from human brain. Miltirone or N-acetylcysteine (NAC) attenuated MPP+-induced reduction in cell viability, ROS production, SOD activity reduction, apoptosis, and increase of caspase-3 activity. Additionally, miltirone recuperated MPP+-induced inactivation of the PI3K/Akt pathway. Moreover, treatment with LY294002, an inhibitor of the PI3K/Akt pathway, reversed the inhibitory effect of miltirone on MPP+-induced ROS generation and apoptosis in SH-SY5Y cells and neuronal primary cultures. In conclusion, miltirone attenuated ROS-dependent apoptosis in MPP+-induced cellular model of PD through activating the PI3K/Akt pathway.

  相似文献   

12.
The chromosomal passenger complex (CPC) regulates various events in cell division. This complex is composed of a catalytic subunit, Aurora B kinase, and three nonenzymatic subunits, INCENP, Survivin, and Borealin. Together, these four subunits interdependently regulate CPC function, and they are highly conserved among eukaryotes. However, a Borealin homologue has never been characterized in the fission yeast, Schizosaccharomyces pombe. Here, we isolate a previously uncharacterized S. pombe protein through association with the Cdc14 phosphatase homologue, Clp1/Flp1, and identify it as a Borealin-like member of the CPC. Nbl1 (novel Borealin-like 1) physically associates with known CPC components, affects the kinase activity and stability of the S. pombe Aurora B homologue, Ark1, colocalizes with known CPC subunits during mitosis, and shows sequence similarity to human Borealin. Further analysis of the Clp1–Nbl1 interaction indicates that Clp1 requires CPC activity for proper accumulation at the contractile ring (CR). Consistent with this, we describe negative genetic interactions between mutant alleles of CPC and CR components. Thus, this study characterizes a fission yeast Borealin homologue and reveals a previously unrecognized connection between the CPC and the process of cytokinesis in S. pombe.  相似文献   

13.
Parkinson disease (PD) is a neurodegenerative disease with multifactorial etiopathogenesis. The discovery of drug candidates that act on new targets of PD is required to address the varied pathological aspects and modify the disease process. In this study, a small compound, 2-(5-methyl-1-benzofuran-3-yl)-N-(5-propylsulfanyl-1,3,4-thiadiazol-2-yl) acetamide (MBPTA) was identified as a novel Rho-associated protein kinase inhibitor with significant protective effects against 1-methyl-4-phenylpyridinium ion (MPP+)-induced damage in SH-SY5Y neuroblastoma cells. Further investigation showed that pretreatment of SH-SY5Y cells with MBPTA significantly suppressed MPP+-induced cell death by restoring abnormal changes in nuclear morphology, mitochondrial membrane potential, and numerous apoptotic regulators. MBPTA was able to inhibit MPP+-induced reactive oxygen species (ROS)/NO generation, overexpression of inducible NO synthase, and activation of NF-κB, indicating the critical role of MBPTA in regulating ROS/NO-mediated cell death. Furthermore, MBPTA was shown to activate PI3K/Akt survival signaling, and its cytoprotective effect was abolished by PI3K and Akt inhibitors. The structural comparison of a series of MBPTA analogs revealed that the benzofuran moiety probably plays a crucial role in the anti-oxidative stress action. Taken together, these results suggest that MBPTA protects against MPP+-induced apoptosis in a neuronal cell line through inhibition of ROS/NO generation and activation of PI3K/Akt signaling.  相似文献   

14.
This study focused on enhancing the production of plumbagin, an anticancer compound, in embryogenic cell suspension cultures of Plumbago rosea. Elicitation techniques have been reported to enhance plumbagin production. Cell suspension cultures raised from embryogenic calli induced from in vitro leaf explants were exposed to different concentrations of jasmonic acid, yeast extract and different auxin combinations. Influence of these on cell growth, biomass and plumbagin production was studied. To our knowledge this is the first report on elicitation of embryogenic cell suspension cultures of P. rosea for enhanced plumbagin production. Elicitor treated suspension cultures exhibited decreased culture viability and increased plumbagin synthesis. A maximum of 5.59-fold enhancement of plumbagin production was observed in cultures added with 1 mg L?1 naphthalene acetic acid after 6 days of incubation. Viability of cultures decreased with increased concentration of elicitors and prolonged incubation period. Application of elicitors in cell suspension cultures induces defense related responses which lead to increased secondary metabolite production for making the cells adapt to the situation. If the stressed condition persists or is in intolerable level this will eventually lead to programmed cell death and loss of culture viability.  相似文献   

15.
BackgroundOsteosarcoma (OS) is the most common malignant bone cancer with more metastasis and increased occurrence in children and teen-agers and being responsible for more number of morbidity and mortality worldwide.ObjectiveThe current exploration was planned study the in vitro anticancer actions of dieckol against human OS MG-63 cells via PI3K/AKT/mTOR signaling inhibition.MethodologyThe cytotoxicity of dieckol was scrutinized by MTT assay. Effects of dieckol on the ROS accumulation, apoptotic cell death, and MMP level in the MG-63 cells were studied by respective fluorescence staining assays. The levels of proliferative, inflammatory, and apoptotic markers in the dieckol treated MG-63 cells were scrutinized by marker specific kits. The expressions of PI3K, AKT, and mTOR was assayed by RT-PCR.ResultsThe MTT assay revealed that the dieckol dose dependently prevented MG-63 cells viability and the IC50 was found at 15 µM. Dieckol treatment effectively reduced the MMP level and improved the ROS generation and apoptosis in MG-63 cells. Dieckol also regulated the proliferative (cyclin D1), inflammatory (COX-2, IL-6, TNF-α, and NF-κB), and apoptotic (caspase-3, Bax, Bcl-2) markers in the MG-63 cells. The PI3K/AKT/mTOR signaling in the MG-63 cells were effectively inhibited by the dieckol treatment.ConclusionIn conclusion, our findings from this study recommends that the dieckol could be a talented anticancer candidate for the OS management in the future.  相似文献   

16.
17.
A family of phosphatidylinositol 3-kinases (PI 3-kinase), comprising three major classes (I-III) in terms of substrate specificity and regulation, play important roles in a variety of cell functions. We previously reported that the class-I heterodimeric PI 3-kinase consisting of p110beta-catalytic and p85-regulatory subunits is synergistically activated by two different types of membrane receptors, one possessing tyrosine kinase activity and the other activating trimeric G proteins. Here we report an additional unique feature of the p110beta/p85 PI 3-kinase. The small GTPase Rab5 was identified as a binding protein for the p110beta-catalytic subunit in a yeast two-hybrid screening system. The interaction appears to require at least two separated amino-acid sequences present specifically in the beta isoform of p110 and the GTP-bound form of Rab5. The expressions of constitutively active and dominant negative mutants of Rab5 in THP-1 cells induce the stimulation and inhibition, respectively, of protein kinase B activity, which is dependent on the PI 3-kinase product phosphatidylinositol 3,4,5-triphosphate. These results suggest that there is a specific interaction between GTP-bound Rab5 and the p110beta/p85 PI 3-kinase, leading to efficient coupling of the lipid kinase product to its downstream target, protein kinase B.  相似文献   

18.
The present study focused on the action mechanism of S. pneumoniae (Sp) in inducing autophagy in human alveolar epithelial cells. Sp, a gram-positive extracellular bacterium, activates autophagy with considerably increased microtuble-associated protein light chain 3 (LC3) punctation in A549 cells. The accumulation of typical autophagosomes and conjugation of LC3 to phosphatidylethanolamine were observed in Sp-infected cells as an indication of autophagy. Using the pneumolysin (PLY) mutant, we successfully demonstrated that PLY is involved in initiating autophagy without affecting the expression levels of PI3K-III and Beclin1. PLY-mediated autophagy depends on the inhibition of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. Furthermore, Sp could also lead to the reactive oxygen species (ROS) hypergeneration in A549 cells. Taken together, Sp infection-induced autophagy is PLY-mediated through ROS hypergeneration and mTOR inhibition. PI3K-I and rapamycin (autophagy inducers) enhanced bacterial clearance, whereas wortmannin (autophagy inhibitor) and acetylcysteine (ROS inhibitor) reduced intracellular bacteria clearance. Thus, Sp-induced autophagy represents a host-protective mechanism, providing new insight into the pathogenesis of respiratory tract Sp infection.  相似文献   

19.
Phosphoinositides are important regulators of diverse cellular functions, and phosphatidylinositol 3-monophosphate (PI3P) is a key element in vesicular trafficking processes. During its intraerythrocytic development, the malaria parasite Plasmodium falciparum establishes a sophisticated but poorly characterized protein and lipid trafficking system. Here we established the detailed phosphoinositide profile of P. falciparum-infected erythrocytes and found abundant amounts of PI3P, while phosphatidylinositol 3,5-bisphosphate was not detected. PI3P production was parasite dependent, sensitive to a phosphatidylinositol-3-kinase (PI3-kinase) inhibitor, and predominant in late parasite stages. The Plasmodium genome encodes a class III PI3-kinase of unusual size, containing large insertions and several repetitive sequence motifs. The gene could not be deleted in Plasmodium berghei, and in vitro growth of P. falciparum was sensitive to a PI3-kinase inhibitor, indicating that PI3-kinase is essential in Plasmodium blood stages. For intraparasitic PI3P localization, transgenic P. falciparum that expressed a PI3P-specific fluorescent probe was generated. Fluorescence was associated mainly with the membrane of the food vacuole and with the apicoplast, a four-membrane bounded plastid-like organelle derived from an ancestral secondary endosymbiosis event. Electron microscopy analysis confirmed these findings and revealed, in addition, the presence of PI3P-positive single-membrane vesicles. We hypothesize that these vesicles might be involved in transport processes, likely of proteins and lipids, toward the essential and peculiar parasite compartment, which is the apicoplast. The fact that PI3P metabolism and function in Plasmodium appear to be substantially different from those in its human host could offer new possibilities for antimalarial chemotherapy.Phosphatidylinositol is a crucial phospholipid in eukaryotic cells. It is a structural membrane lipid, and phosphorylation of the hydroxyl groups of its inositol head group by specific lipid kinases leads to the production of seven different phosphoinositide species, which have been found to be enriched in distinct cellular compartments. They play key roles in a multitude of cellular processes, such as membrane traffic, cell motility, cytoskeletal reorganization, DNA synthesis, the cell cycle, adhesion, and signal transduction (9). Approximately 1% of total lipids in mammalian cells are phosphoinositides, mainly phosphatidylinositol 4-monophosphate (PI4P) and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] (45). Derivatives phosphorylated at the 3 position are considerably less abundant in mammalian cells. Phosphatidylinositol 3-monophosphate (PI3P) is a ubiquitous lipid in eukaryotic cells and is present in small amounts in mammalian cells (classically <15% of PI4P), while PI3P is as abundant as PI4P in the yeast Saccharomyces cerevisiae (2). It has been suggested that one of the functions of these lipids is to establish membrane identity (46); PI4P predominates at the Golgi apparatus (33), PI(4,5)P2 at the plasma membrane (62), PI3P on early endosomes (20), and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] on late endocytic organelles (48). Certain phosphoinositides have been shown to play important roles in constitutive membrane traffic. PI3P is involved in endocytosis and vesicular trafficking toward the lysosome in yeast and mammalian cells (23, 39). PI3P has also been shown to be implicated in the processes of retrograde trafficking from the endosome to the Golgi apparatus and in autophagy (7, 42). PI(3,5)P2 is found in yeast, mammalian, and plant cells (11) and is essential for protein sorting in multivesicular bodies (38), which are an intermediate compartment for the degradation of cell surface receptors within lysosomes.PI3P is the product of PI3-kinase class III (16), also termed Vps34 (vacuolar protein sorting), and PI(3,5)P2 is synthesized by the phosphorylation of PI3P by PIKfyve (phosphoinositide kinase, FYVE finger containing; Fab1 in yeast) (38). Both enzymes are conserved across eukaryotic evolution from yeast to mammals. Vps34-type enzymes are the only PI3-kinases in unicellular organisms. In contrast, metazoan cells possess three classes of PI3-kinases (I, II, and III), which differ from each other by their activation mode and their substrate specificity (56), leading to the synthesis of phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2], and PI3P, respectively. The synthesis of PI(3,4,5)P3 and PI(3,4)P2 is controlled by agonist stimulation of cells, resulting in strong fluctuations in their cellular levels. These phosphoinositides are generally not observed in unicellular organisms.Plasmodium falciparum is the causal agent of the most severe form of human malaria. During the symptomatic phase of the disease, the parasite resides within a vacuole in mature erythrocytes, cells that are devoid of protein and lipid biosynthesis and intracellular compartments. In addition to the classically observed organelles of eukaryotic cells, Plasmodium contains certain particular compartments. These include the apicoplast, a four-membrane bounded plastid-like organelle derived from an ancestral secondary endosymbiosis event (61), and specialized secretory organelles, rhoptries and micronemes, located at the apical pole and involved in host cell invasion. Plasmodium blood stages internalize host cell hemoglobin that is degraded in a specialized compartment, the food vacuole (17). Some characteristics of the food vacuole, such as low pH and the presence of proteolytic enzymes, could qualify it as a lysosome-like organelle (21). However, this very peculiar compartment is present only during Plasmodium blood stages, is absent from mosquito and liver stages, and is not found in other apicomplexan parasites. Targeting proteins and lipids to these numerous cellular compartments requires sophisticated vesicular trafficking. Certain classical actors in vesicular trafficking in eukaryotic cells, such as Rab GTPases and SNARE-like proteins, are present in Plasmodium (3, 44).Here we addressed the question of whether the second group of classical actors in vesicle transport, i.e., the phosphoinositides PI3P and PI(3,5)P2, are synthesized by the parasite. For this purpose, we established, for the first time, a detailed phosphoinositide profile of P. falciparum-infected red blood cells and detected important amounts of PI3P, which we found located at the food vacuole membrane and the apicoplast. In contrast, PI(3,5)P2 could not be detected, indicating possible differences in protein sorting between Plasmodium and other eukaryotes. PI3-kinase activity is essential for Plasmodium, suggesting that PI3P-dependent functions might be an interesting target for future drug development.  相似文献   

20.
Lung cancer is primarily caused by exposure to tobacco smoke. Tobacco smoke contains numerous carcinogens, including polycyclic aromatic hydrocarbons (PAH). The most common PAH studied is benzo[a]pyrene (B[a]P). B[a]P is metabolically activated through multiple routes, one of which is catalyzed by aldo-keto reductase (AKR) to B[a]P-7,8-dione (BPQ). BPQ undergoes a futile redox cycle in the presence of NADPH to generate reactive oxygen species (ROS). ROS, in turn, damages DNA. Studies with a yeast p53 mutagenesis system found that the generation of ROS by PAH o-quinones may contribute to lung carcinogenesis because of similarities between the patterns (types of mutations) and spectra (location of mutations) and those seen in lung cancer. The patterns were dominated by G to T transversions, and the spectra in the experimental system have mutations at lung cancer hotspots. To address repair mechanisms that are responsible for BPQ induced damage we observed the effect of mutating two DNA repair genes OGG1 and APE1 (APN1 in yeast) and tested them in a yeast reporter system for p53 mutagenesis. There was an increase in both the mutant frequency and the number of G:C/T:A transversions in p53 treated with BPQ in ogg1 yeast but not in apn1 yeast. Knocking out APN2 increased mutagenesis in the apn1 cells. In addition, we did not find a strand bias on p53 treated with BPQ in ogg1 yeast. These studies suggest that Ogg1 is involved in repairing the oxidative damage caused by BPQ, Apn1 and Apn2 have redundant functions and that the stand bias seen in lung cancer may not be due to impaired repair of oxidative lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号